Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 5
Sep.  2016
Turn off MathJax
Article Contents
He Qiang, Liu Xi, Li Baosheng, Deng Liwei, Liu Wei, Wang Liping. Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.07.003
Citation: He Qiang, Liu Xi, Li Baosheng, Deng Liwei, Liu Wei, Wang Liping. Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.07.003

Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K

doi: 10.1016/j.mre.2016.07.003
More Information
  • Corresponding author: *Corresponding author. School of Earth and Space Sciences, Peking University, Beijing 100871, China. Fax: +86 10 6275 2996. E-mail address: xi.liu@pku.edu.cn (X. Liu).
  • Received Date: 2016-05-10
  • Accepted Date: 2016-07-27
  • Publish Date: 2016-09-15
  • The thermal equation of state of a natural kyanite has been investigated with a DIA-type, cubic-anvil apparatus (SAM85) combined with an energy-dispersive synchrotron X-ray radiation technique up to 8.55 GPa and 1273 K. No phase transition was observed in the studied pressure-temperature (P-T) range. The Le Bail full profile refinement technique was used to derive the unit-cell parameters. By fixing the bulk modulus K0 as 196 GPa and its pressure derivative K0 as 4, our P-V (volume)-T data were fitted to the high temperature Birch–Murnaghan equation of state. The obtained parameters for the kyanite are: V0 = 294.05(9) Å3, α = 2.53(11) × 10−5 K−1 and (∂K/∂T)P = −0.021(8) GPa∙K−1. These parameters have been combined with other experimentally-measured thermodynamic data for the relevant phases to calculate the P-T locus of the reaction kyanite = stishovite + corundum. With this thermodynamically constrained phase boundary, previous high-pressure phase equilibrium experimental studies with the multi-anvil press have been evaluated.
  • loading
  • [1]
    H.M. Lang, Quantitative interpretation of within-outcrop variation in metamorphic assemblage in staurolite-kyanite-grade metapelites, Baltimore, Maryland, Can. Mineral. 29 (1991) 655–671.
    [2]
    R.M. Kuyumjian, Kyanite-staurolite ortho-amphibolite from the Chapada region, Goiás, central Brazil, Mineral. Mag. 62 (1998) 501–507.10.1180/002646198547873
    [3]
    M. Vrabec, M. Janák, N. Froitzheim, J.C.M. De Hoog, Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia), Lithos 144–145 (2012) 40–55.10.1016/j.lithos.2012.04.004
    [4]
    T. Irifune, A.E. Ringwood, W.O. Hibberson, Subduction of continental crust and terrigenous and pelagic sediments: an experimental study, Earth Planet. Sci. Lett. 126 (1994) 351–368.10.1016/0012-821x(94)90117-1
    [5]
    S. Ono, Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: implications for water transport in subduction zones, J. Geophys. Res. 103 (1998) 18253–18267.10.1029/98jb01351
    [6]
    J.R. Goldsmith, The melting and breakdown reactions of anorthite at high pressures and temperatures, Am. Mineral. 65 (1980) 272–284.
    [7]
    L. Gautron, S. Kesson, W. Hibberson, Phase relations for CaAl2S2O8 (anorthite composition) in the system CaO-Al2O3-SiO2 at 14 GPa, Phys. Earth Planet. Inter. 97 (1996) 71–81.10.1016/0031-9201(96)03161-5
    [8]
    X. Liu, H. Ohfuji, N. Nishiyama, Q. He, T. Sanehira, et al., High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications, J. Geophys. Res. 117 (2012) B09205.10.1029/2012jb009290
    [9]
    N. Kinomura, S. Kume, M. Koizumi, Synthesis of K2SiSi3O9 with silicon in 4- and 6-coordination, Mineral. Mag. 40 (1975) 401–404.10.1180/minmag.1975.040.312.09
    [10]
    S. Urakawa, T. Kondo, N. Igawa, O. Shimomura, H. Ohno, Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8, Phys. Chem. Miner. 21 (1994) 387–391.10.1007/bf00203296
    [11]
    L. Chang, Z. Chen, X. Liu, H. Wang, Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication, Phys. Chem. Miner. 40 (2013) 29–40.10.1007/s00269-012-0543-7
    [12]
    B.J. Skinner, S.P. Clark, D.E. Appleman, Molar volumes and thermal expansions of andalusite, kyanite, and sillimanite, Am. J. Sci. 259 (1961) 651–668.10.2475/ajs.259.9.651
    [13]
    J.K. Winter, S. Ghose, Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs, Am. Mineral. 64 (1979) 573–586.
    [14]
    G.D. Gatta, F. Nestola, J.M. Walter, On the thermo-elastic behaviour of kyanite: a neutron powder diffraction study up to 1200 °C, Mineral. Mag. 70 (2006) 309–317.10.1180/0026461067030334
    [15]
    X. Liu, Q. He, H. Wang, M.E. Fleet, X. Hu, Thermal expansion of kyanite at ambient pressure: An X-ray powder diffraction study up to 1000 °C, Geosci. Front. 1 (2010) 91–97.10.1016/j.gsf.2010.07.002
    [16]
    T. Irifune, K. Kuroda, T. Minagawa, Experimental study of the decomposition of kyanite at high pressure and high temperature, in: T. Yukutake (Ed.), The Earth's Central Part: Its Structure and Dynamics, Terra Scientific Publishing Company, Tokyo, 1995, pp. 35–44.
    [17]
    M. Matsui, Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2, Phys. Chem. Miner. 23 (1996) 345–353.10.1007/bf00199500
    [18]
    P. Comodi, P.F. Zanazzi, S. Poli, M.W. Schmidt, High-pressure behavior of kyanite: Compressibility and structural deformations, Am. Mineral. 82 (1997) 452–459.10.2138/am-1997-5-602
    [19]
    H. Yang, R.T. Downs, L.W. Finger, Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure, Am. Mineral. 82 (1997) 467–474.10.2138/am-1997-5-604
    [20]
    A.R. Oganov, J.P. Brodholt, High-pressure phases in the Al2SiO5 system and the problem of aluminous phase in the Earth's lower mantle: ab initio calculations, Phys. Chem. Miner. 27 (2000) 430–439.10.1007/s002699900081
    [21]
    B. Winkler, M. Hytha, M. Warren, V. Milman, J. Gale, J. Schreuer, Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite, sillimanite and kyanite, Z. Krist. 216 (2001) 67–70.10.1524/zkri.216.2.67.20336
    [22]
    A. Friedrich, M. Kunz, B. Winkler, T. Le Bihan, High-pressure behavior of sillimanite and kyanite: Compressibility, decomposition and indications of a new high-pressure phase, Z. Krist. 219 (2004) 324–329.10.1524/zkri.219.6.324.34635
    [23]
    X. Liu, S.R. Shieh, M.E. Fleet, L. Zhang, Compressibility of a natural kyanite to 17.5 GPa, Prog. Nat. Sci. 19 (2009) 1281–1286.10.1016/j.pnsc.2009.04.001
    [24]
    B. Li, J. Kung, R.C. Liebermann, Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus, Phys. Earth Planet. Inter. 143–144 (2004) 559–574.10.1016/j.pepi.2003.09.020
    [25]
    D.L. Decker, High-pressure equation of state for NaCl, KCl, and CsCl, J. Appl. Phys. 42 (1971) 3239–3244.10.1063/1.1660714
    [26]
    Y.B. Wang, D.J. Weidner, Y. Meng, Advances in equation-of-state measurements in SAM-85, in: M.H. Manghnani, T. Yagi (Eds.), Properties of Earth and Planetary Materials at High Pressure and Temperature, American Geophysical Union, Washington D. C., 1998, pp. 365–372.
    [27]
    X. Hu, X. Liu, Q. He, H. Wang, S. Qin, et al., Thermal expansion of andalusite and sillimanite at ambient pressure: A powder X-ray diffraction study up to 1000 °C, Mineral. Mag. 75 (2011) 363–374.10.1180/minmag.2011.075.2.363
    [28]
    A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Report LAUR, 2004.
    [29]
    B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34 (2001) 210–213.10.1107/s0021889801002242
    [30]
    A. Le Bail, Whole powder pattern decomposition methods and applications: A retrospection, Powder Diffr. 20 (2005) 316–326.10.1154/1.2135315
    [31]
    M.W. Schmidt, S. Poli, P. Comodi, P.F. Zanazzi, High-pressure behavior of kyanite: Decomposition of kyanite into stishovite and corundum, Am. Mineral. 82 (1997) 460–466.10.2138/am-1997-5-603
    [32]
    Y. Nishihara, K. Nakayama, E. Takahashi, T. Iguchi, K. Funakoshi, P-V-T equation of state of stishovite to the mantle transition zone conditions, Phys. Chem. Miner. 31 (2005) 660–670.10.1007/s00269-004-0426-7
    [33]
    M. Akaogi, M. Oohata, H. Kojitani, H. Kawaji, Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary, Am. Mineral. 96 (2011) 1325–1330.10.2138/am.2011.3748
    [34]
    W. Yong, E. Dachs, A. Benisek, Heat capacity, entropy and phase equilibria of stishovite, Phys. Chem. Miner. 39 (2011) 153–162.10.1007/s00269-011-0470-z
    [35]
    N. Funamori, T. Yagi, T. Uchida, Deviatoric stress measurement under uniaxial compression by a powder X-ray diffraction method, J. Appl. Phys. 75 (1994) 4327–4331.10.1063/1.355975
    [36]
    L. Liu, Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature, Earth Planet. Sci. Lett. 24 (1974) 224–228.10.1016/0012-821x(74)90100-9
    [37]
    S. Ono, High temperature stability limit of phase egg, AlSiO3(OH), Contrib. Mineral. Petrol. 137 (1999) 83–89.10.1007/s004100050583
    [38]
    X. Liu, N. Nishiyama, T. Sanehira, T. Inoue, Y. Higo, et al., Decomposition of kyanite and solubility of Al2O3 in stishovite at high pressure and high temperature conditions, Phys. Chem. Miner. 33 (2006) 711–721.10.1007/s00269-006-0122-x
    [39]
    S. Ono, Y. Nakajima, K. Funakoshi, In situ observation of the decomposition of kyanite at high pressures and high temperatures, Am. Mineral. 92 (2007) 1624–1629.10.2138/am.2007.2492
    [40]
    R.A. Robie, B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 and 1 Bar (105 Pascals) pressure and at higher temperatures, U.S. Geol. Surv. Bull. 2131 (1995).
    [41]
    M. Akaogi, N. Kamii, A. Kishi, H. Kojitani, Calorimetric study on high-pressure transitions in KAlSi3O8, Phys. Chem. Miner. 31 (2004) 85–91.10.1007/s00269-003-0372-9
    [42]
    M. Akaogi, H. Yusa, K. Shiraishi, T. Suzuki, Thermodynamic properites of α-quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures, J. Geophys. Res. 100 (1995) 22337–22347.10.1029/95jb02395
    [43]
    H. Kojitani, Y. Wakabayashi, Y. Tejima, C. Kato, M. Haraguchi, et al., High-pressure phase relations in Ca2AlSiO5.5 and energetics of perovskite-related compounds with oxygen defects in the Ca2Si2O6–Ca2Al2O5 join, Phys. Earth Planet. Inter. 173 (2009) 349–353.10.1016/j.pepi.2009.02.001
    [44]
    L.S. Dubrovinsky, S.K. Saxena, P. Lazor, High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell, Phys. Chem. Miner. 25 (1998) 434–441.10.1007/s002690050133
    [45]
    Y. Fei, C.M. Bertka, Phase transitions in the Earth's mantle and mantle mineralogy, in: Y. Fei, C.M. Bertka, B.O. Mysen (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: a Tribute to Francis R. (Joe) Boyd, The Geochemical Society, Houston, 1999, pp. 189–207.
    [46]
    T.J.B. Holland, R. Powell, An imporved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol. 29 (2011) 333–383.10.1111/j.1525-1314.2010.00923.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (53) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return