Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
Liu Meifang, Su Lin, Li Jie, Chen Sufen, Liu Yiyang, Li Jing, Li Bo, Chen Yongping, Zhang Zhanwen. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4). doi: 10.1016/j.mre.2016.07.002
Citation: Liu Meifang, Su Lin, Li Jie, Chen Sufen, Liu Yiyang, Li Jing, Li Bo, Chen Yongping, Zhang Zhanwen. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4). doi: 10.1016/j.mre.2016.07.002

Investigation of spherical and concentric mechanism of compound droplets

doi: 10.1016/j.mre.2016.07.002
More Information
  • Corresponding author: ** Corresponding author. E-mail addresses: liumeifang@caep.cn (M. Liu), bjzzw1973@163.com (Z. Zhang).; *Corresponding author.
  • Received Date: 2016-01-22
  • Accepted Date: 2016-07-05
  • Publish Date: 2016-07-15
  • Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF) experiments. Driven by the need to control the shape of water-in-oil (W1/O) compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2) were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS) shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2) interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.
  • loading
  • [1]
    A.M. Dunne, HiPER: Technical Background and Conceptual Design Report 2007, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, 2007.
    [2]
    K. Nagai, H. Yang, T. Norimatsu, H. Azechi, F. Belkada, et al., Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) project, Nucl. Fusion 49 (2009) 095028.10.1088/0029-5515/49/9/095028
    [3]
    P.R. Paguio, S.P. Paguio, C.A. Frederick, A. Nikroo, O. Acenas, Improving the yield of target quality Omega size PAMS mandrels by modifying emulsion components, Fusion Sci. Technol. 49 (2006) 743–749.10.13182/fst06-a1195
    [4]
    C. Lattaud, L. Guillot, C.-H. Brachais, E. Fleury, O. Legaie, et al., Influence of a density mismatch on TMPTMA shells nonconcentricity, J. Appl. Polym. Sci. 124 (2012) 4882–4888.
    [5]
    A.K. Tucker-Schwartz, Z. Bei, R.L. Garrell, T.B. Jones, Polymerization of electric field-centered double emulsion droplets to create polyacrylate shells, Langmuir 26 (2010) 18606–18611.10.1021/la103719z
    [6]
    N. Antipa, S. Baxamusa, E. Buice, A. Conder, M. Emerich, et al., Automated ICF capsule characterization using confocal surface profilometry, Fusion Sci. Technol. 63 (2013) 151–159.10.13182/fst20-38
    [7]
    G. Randall, B. Blue, Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet, Bull. Am. Phys. Soc. 57 (2012).
    [8]
    G. Randall, B. Blue, Continuous dielectrophoretic centering of compound droplets, in: APS Meeting Abstracts, 2012. 41014.
    [9]
    R.C. Cook, P.M. Gresho, K.E. Hamilton, Examination of some droplet deformation forces related to NIF capsules sphericity, J. Mosc. Phys. Soc. 8 (1998) 221–226.
    [10]
    S. Kumar, V. Ganvir, C. Satyanand, R. Kumar, K. Gandhi, Alternative mechanisms of drop breakup in stirred vessels, Chem. Eng. Sci. 53 (1998) 3269–3280.10.1016/s0009-2509(98)00139-0
    [11]
    H. Ren, S. Xu, S.T. Wu, Effects of gravity on the shape of liquid droplets, Opt. Commun. 283 (2010) 3255–3258.10.1016/j.optcom.2010.04.045
    [12]
    X. Qu, Y. Wang, Dynamics of concentric and eccentric compound droplets suspended in extensional flows, Phys. Fluids 24 (2012) 123302–123321.10.1063/1.4770294
    [13]
    D. Megias-Alguacil, Interfacial tension determination of liquid systems in which one of the phases is non-Newtonian using a rheo-optical method, Meas. Sci. Technol. 22 (2011) 037002.10.1088/0957-0233/22/3/037002
    [14]
    B.W. Mcquillan, A. Greenwood, Microencapsulation process factors which influence the sphericity of 1 mm o.d. poly(a-methystyrene) shells for ICF, Fusion Technol. 35 (1999) 194–197.10.13182/fst99-a11963921
    [15]
    M.F. Liu, S.F. Chen, X.B. Qi, B. Li, R.T. Shi, et al., Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching, Chem. Eng. J. 241 (2014) 466–476.10.1016/j.cej.2013.08.120
    [16]
    B. Cook, M. Takagi, S. Buckley, E. Fearon, A. Hassel, Organic solvent choice, in: Mandrel Development Update – l/98 to 12/98, 1999.
    [17]
    S.F. Chen, L. Su, Y.Y. Liu, B. Li, X.B. Qi, et al., Density match during fabrication process of poly(α-methylstyrene) mandrels by microencapsulation, High Power Laser Part. Beams 24 (2012) 1561–1565.10.3788/hplpb20122407.1561
    [18]
    H. Huang, R.B. Stephens, D.W. Hill, C. Lyon, A. Nikroo, et al., Automated batch characterization of ICF shells with vision-enabled optical microscope system, Fusion Sci. Technol. 45 (2004) 214–217.10.13182/fst04-a453
    [19]
    M.F. Liu, S.F. Chen, Y.Y. Liu, L. Su, R.T. Shi, et al., Characterization of sphericity and wall thickness uniformity of thick-walled hollow microspheres, High Power Laser Part. Beams 26 (2014) 22017.10.3788/hplpb20142602.22017
    [20]
    T. Norimastu, Y. Izawa, K. Mima, P.M. Gresho, Modeling of the centering force in a compound emulsion to make uniform plastic shells for laser fusion targets, Fusion Technol. 35 (1999) 147–156.10.13182/fst99-a11963918
    [21]
    M. Takagi, R. Cook, R. Stephens, J. Gibson, S. Paguio, Stiffening of PaMS mandrels during curing, Fusion Technol. 38 (2000) 50–53.10.13182/fst00-a36115
    [22]
    N.J. Alvarez, L.M. Walker, S.L. Anna, A microtensiometer to probe the effect of radius of curvature on surfactant transport to a spherical interface, Langmuir 26 (2010) 13310–13319.10.1021/la101870m
    [23]
    J. Jiao, D.J. Burgess, Multiple emulsion stability: pressure balance and interfacial film strength, in: Multiple Emulsions, John Wiley & Sons, Inc., 2008, pp. 1–27.
    [24]
    P.B. Umbanhowar, V. Prasad, D.A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir 16 (2000) 347–351.10.1021/la990101e
    [25]
    J.H. Xu, G.S. Luo, G.G. Chen, J.D. Wang, Experimental and theoretical approaches on droplet formation from a micrometer screen hole, J. Membr. Sci. 266 (2005) 121–131.10.1016/j.memsci.2005.05.017
    [26]
    J.H. Xu, S.W. Li, W.J. Lan, G.S. Luo, Microfluidic approach for rapid interfacial tension measurement, Langmuir 24 (2008) 11287–11292.10.1021/la801526n
    [27]
    G. De Luca, F.P. Di Maio, A. Di Renzo, E. Drioli, Droplet detachment in cross-flow membrane emulsification: comparison among torque- and force-based models, Chem. Eng. Process.: Process Intensif. 47 (2008) 1150–1158.10.1016/j.cep.2007.03.010
    [28]
    T.G. Wang, A. Anilkumar, C. Lee, K. Lin, Core-centering of compound drops in capillary oscillations: observations on USML-1 experiments in space, J. Colloid Interface Sci. 165 (1994) 19–30.10.1006/jcis.1994.1201
    [29]
    A. Anilkumar, A. Hmelo, T. Wang, Core centering of immiscible compound drops in capillary oscillations: experimental observations, J. Colloid Interface Sci. 242 (2001) 465–469.10.1006/jcis.2001.7794
    [30]
    B.W. McQuillan, R. Paguio, P. Subramanian, M. Takagi, A. Zebib, Hydrodynamic issues in PAMS mandrel target fabrication, in: Third International Conference on Inertial Fusion Sciences and Applications, Monterey, CA, 2003.
    [31]
    J. Streit, D. Schroen, Developmet of divinylbenzene foam shells for use as inertial fusion energy reactor targets, Fusion Sci. Technol. 43 (2003) 321–326.10.13182/fst43-321
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (66) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return