| Citation: | Liu Lei, Bi Yan. How far away are accurate equations of state determinations? Some issues on pressure scales and non-hydrostaticity in diamond anvil cells[J]. Matter and Radiation at Extremes, 2016, 1(4). doi: 10.1016/j.mre.2016.06.002 |
| [1] |
G. Shen, P. Chow, Y. Xiao, S. Sinogeikin, Y. Meng, et al., HPCAT: an integrated high pressure synchrotron facility at the advanced photon source, High Pressure Res. 28 (2008) 145.10.1080/08957950802208571
|
| [2] |
L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, V. Prakapenka, C. Prescher, et al., The most incompressible metal osmium at static pressures above 750 gigapascals, Nature 525 (2015) 226.10.1038/nature14681
|
| [3] |
S. Tateno, K. Hirose, Y. Ohishi, Y. Tatsumi, The structure of iron in Earth's inner core, Science 330 (2010) 359.10.1126/science.1194662
|
| [4] |
K. Syassen, W.B. Holzapfel, Isothermal compression of Al and Ag to 120 kbar, J. Appl. Phys. 49 (1978) 4427.10.1063/1.325497
|
| [5] |
W.B. Holzapfel, Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above, J. Phys. Chem. Ref. Data 30 (2001) 515.10.1063/1.1370170
|
| [6] |
K.W. Katahara, M.H. Manghnani, E.S. Fisher, Pressure derivatives of the elastic moduli of niobium and tantalum, J. Appl. Phys. 47 (1976) 434.10.1063/1.322666
|
| [7] |
D.J. Steiberg, Some observations regarding the pressure dependence of the bulk modulus, J. Phys. Chem. Solids 43 (1982) 1173.
|
| [8] |
N.C. Holmes, J.A. Moriarty, G.R. Gathers, W.J. Nellis, The equation of state of platinum to 660 GPa (6.6 Mbar), J. Appl. Phys. 66 (1989) 2962.10.1063/1.344177
|
| [9] |
R.S. Hixson, J.N. Fritz, Sock compression of tungsten and molybdenum, J. Appl. Phys. 71 (1992) 1721.10.1063/1.351203
|
| [10] |
W.J. Nellis, J.A. Moriarty, A.C. Mitchell, M. Ross, R.G. Dandrea, et al., Metal physics at ultrahigh pressure: aluminum, copper, and lead as prototypes, Phys. Rev. Lett. 60 (1988) 1414.10.1103/physrevlett.60.1414
|
| [11] |
C.S. Zha, H.K. Mao, R.J. Hemley, Elasticity of MgO and a primary pressure scale to 55 GPa, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13494.10.1073/pnas.240466697
|
| [12] |
P.I. Dorogokupets, A.R. Oganov, Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shockwave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures, Phys. Rev. B 75 (2007) 024115.10.1103/physrevb.75.024115
|
| [13] |
W.B. Holzapfel, Equations of state for Cu, Ag, and Au and problems with shock wave reduced isotherms, High Pressure Res. 30 (2010) 372.10.1080/08957959.2010.494845
|
| [14] |
K. Kunc, K. Syassen, P(V) equations of state of solids: density functional theory calculations and LDA versus GGA scaling, Phys. Rev. B 81 (2010) 134102.10.1103/physrevb.81.134102
|
| [15] |
K. Kunc, I. Loa, K. Syassen, Equation of state and phonon frequency calculations of diamond at high pressure, Phys. Rev. B 81 (68) (2003) 094107.10.1103/physrevb.68.094107
|
| [16] |
H.K. Mao, P.M. Bell, Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 49 (1978) 3276.10.1063/1.325277
|
| [17] |
H.K. Mao, J. Xu, P.M. Bell, Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions, J. Geophys. Res. 91 (1986) 4673.10.1029/jb091ib05p04673
|
| [18] |
F. Datchi, R. LeToullec, P. Loubeyre, Improved calibration of the SrB4O7:Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures, J. Appl. Phys. 81 (1997) 3333.10.1063/1.365025
|
| [19] |
S.V. Raju, J.M. Zaug, B. Chen, J. Yuan, J.W. Knight, et al., Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature, J. Appl. Phys. 110 (2011) 023521.10.1063/1.3608167
|
| [20] |
Q. Jing, Q. Wu, L. Liu, J. Xu, Y. Bi, et al., An experimental study on SrB4O7:Sm2+ as a pressure sensor, J. Appl. Phys. 113 (2013) 023507.10.1063/1.4774113
|
| [21] |
M.I. Eremets, Megabar high-pressure cells for Raman measurements, J. Raman Spectrosc. 34 (2003) 515.10.1002/jrs.1044
|
| [22] |
L. Sun, A.L. Ruoff, G. Stupian, Convenient optical pressure gauge for multipressure calibrated to 300 GPa, Appl. Phys. Lett. 86 (2005) 014103.10.1063/1.1840117
|
| [23] |
Y. Akahama, H. Kawamura, Pressure calibration of diamond anvil Raman gauge to 310 GPa, J. Appl. Phys. 100 (2006) 043516.10.1063/1.2335683
|
| [24] |
B.J. Baer, M.E. Chang, W.J. Evans, Raman shift of stressed diamond anvils: pressure calibration and culet geometry dependence, J. Appl. Phys. 104 (2008) 034504.10.1063/1.2963360
|
| [25] |
T. Kawamoto, K.N. Matsukage, T. Nagai, K. Nishimura, T. Mataki, Raman spectroscopy of cubic boron nitride under high temperature and pressure conditions: a new optical pressure marker, Rev. Sci. Instrum. 75 (2004) 2451.10.1063/1.1765756
|
| [26] |
A.F. Goncharov, J.C. Crowhurst, J.K. Dewhurst, S. Sharma, Raman spectroscopy of cubic boron nitride under extreme conditions of high pressure and temperature, Phys. Rev. B 72 (2005) 100104(R).10.1103/physrevb.72.100104
|
| [27] |
A.F. Goncharov, S. Sinogeikin, J.C. Crowhurst, M. Ahart, D. Lakshtanov, et al., Cubic boron nitride as a primary calibrant for a high temperature pressure scale, High Pressure Res. 27 (2007) 409.10.1080/08957950701659726
|
| [28] |
H. Spetzler, A. Shen, G. Shen, G. Herrmannsdoerfer, H. Schulze, et al., Ultrasonic measurements in a diamond anvil cell, Phys. Earth Planet. Inter. 98 (1996) 93.10.1016/s0031-9201(96)03171-8
|
| [29] |
S.D. Jacobsen, H.A. Spetzler, H.P. Reichmann, J.R. Smyth, S.J. Mackwell, et al., Gigahertz ultrasonic interferometry at high P and T: new tools for obtaining a thermodynamic equation of state, J. Phys.: Condens. Matter 14 (2002) 11525.10.1088/0953-8984/14/44/510
|
| [30] |
N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, et al., Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium, J. Phys.: Conf. Ser. 278 (2011) 012017.10.1088/1742-6596/278/1/012017
|
| [31] |
J. Lin, W. Strurhahn, J. Zhao, G. Shen, H.K. Mao, et al., Sound velocities of hot dense iron: Birch's law revisited, Science 308 (2005) 1892.10.1126/science.1111724
|
| [32] |
F. Birch, Finite elastic strain of cubic crystal, Phys. Rev. 71 (1947) 809.10.1103/physrev.71.809
|
| [33] |
F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressure and 300 K, J. Geophys. Res. 95 (1978) 1257.10.1029/jb083ib03p01257
|
| [34] |
P. Vinet, J. Ferrante, J.H. Rose, J.R. Smith, Compressibility of solids, J. Geophys. Res. 92 (1987) 9319.10.1029/jb092ib09p09319
|
| [35] |
P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, Universal features of the equation of state of solids, J. Phys.: Condens. Matter 1 (1989) 1941.10.1088/0953-8984/1/11/002
|
| [36] |
J. Poirier, Introduction to the Physics of the Earth's Interior, Cambridge University Press, Cambridge, 2000, p. 78.
|
| [37] |
G. Simmons, H. Wang, Single Crystal Elastic Constant and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, 1971.
|
| [38] |
W.B. Daniels, C.S. Smith, Pressure derivatives of the elastic constants of copper, silver and gold to 10000 Bars, Phys. Rev. 111 (1958) 713.10.1103/physrev.111.713
|
| [39] |
J.C. Jamieson, J.N. Fritz, M.H. Manghnani, in: S. Akimoto, M.H. Manghnani (Eds.), High-pressure Research in Geophysics,” of Advances in Earth and Planetary Sciences, vol. 12, Center for Academic Publishing, Tokyo, 1982.
|
| [40] |
Y. Wang, D. Chen, X. Zhang, Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa, Phys. Rev. Lett. 84 (2000) 3220.10.1103/physrevlett.84.3220
|
| [41] |
Y. Wang, R. Ahuja, B. Johansson, Reduction of shock-wave data with mean-field potential approach, Phys. Rev. B 92 (2002) 6616.10.1063/1.1518781
|
| [42] |
Y. Wang, Theoretical Studies of Thermodynamic Properties of Condensed Matter Under High Temperature and High Pressure, Ph.D thesis, Uppsala University, Uppsala, 2004.
|
| [43] |
A.D. Chijioke, W.J. Nellis, A. Soldatov, I.F. Silvera, The ruby pressure standard to 150 GPa, J. Appl. Phys. 98 (2005) 114905.10.1063/1.2135877
|
| [44] |
K. Jin, X. Li, Q. Wu, H. Geng, L. Cai, et al., The pressure-volume-temperature equation of state of MgO derived from shock Hugoniot data and its application as a pressure scale, J. Appl. Phys. 107 (2010) 113518.10.1063/1.3406140
|
| [45] |
K. Jin, Q. Wu, H. Geng, X. Li, L. Cai, et al., Pressure-volume-temperature equation of state of Au and Pt up to 300 GPa and 3000 K: Internally consistent pressure scales, High Pressure Res. 31 (2011) 560.10.1080/08957959.2011.611469
|
| [46] |
Q. Wu, Studies on Equation of State and Grüneisen Parameter for Metals at High Pressures and Temperatures, Ph.D. thesis, China Academy of Engineering Physics, 2004.
|
| [47] |
A.L. Ruoff, R.C. Lincoln, Y.C. Chen, High-pressure calibration with a new absolute-pressure gauge, J. Appl. Phys. 22 (1973) 310.10.1063/1.1654650
|
| [48] |
B. Li, J. Kung, T. Uchida, Y. Wang, Pressure calibration to 20 GPa by simultaneous use of ultrasonic and X-ray techniques, J. Appl. Phys. 98 (2005) 013521.10.1063/1.1946905
|
| [49] |
J. Xu, E. Huang, Primary pressure scale–A proposal, J. Geol. Soc. China 41 (1998) 199.10.1007/bf02877807
|
| [50] |
K. Syassen, Ruby under pressure, High Pressure Res. 28 (2008) 75.10.1080/08957950802235640
|
| [51] |
K.K. Zhuravlev, A.F. Goncharov, S.N. Tkachev, P. Dera, V.B. Prakapenka, Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale, J. Appl. Phys. 113 (2013) 113503.10.1063/1.4795348
|
| [52] |
R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block, Pressure measurement made by the utilization of ruby sharp-line luminescence, Science 176 (1972) 284.10.1126/science.176.4032.284
|
| [53] |
I.V. Aleksandrov, A.F. Goncharov, A.N. Zisman, S.M. Stishov, Diamond at high pressures: Raman scattering, equation of state, and high pressure scale, Sov. Phys. JETP 66 (1987) 384.
|
| [54] |
W.B. Holzapfel, Refinement of the ruby luminescence pressure scale, J. Appl. Phys. 93 (2003) 1813.10.1063/1.1525856
|
| [55] |
K. Kunc, I. Loa, K. Syassen, Diamond under pressure: Ab-initio calculations of the equation of state and optical phonon frequency revisited, High Pressure Res. 24 (2004) 101.10.1080/08957950310001635765
|
| [56] |
A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa, Phys. Rev. B 70 (2004) 094112.10.1103/physrevb.70.094112
|
| [57] |
A. Dewaele, M. Torrent, P. Loubeyre, M. Mezouar, Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations, Phys. Rev. B 78 (2008) 104112.10.1103/physrevb.78.104102
|
| [58] |
A.D. Chijioke, W.J. Nellis, I.F. Silvera, High-pressure equations of state of Al, Cu, Ta, and W, J. Appl. Phys. 98 (2005) 073526.10.1063/1.2071449
|
| [59] |
L. Liu, Y. Bi, J. Xu, Ruby fluorescence pressure scale: revisited, Chin. Phys. B 22 (2013) 056201.10.1088/1674-1056/22/5/056201
|
| [60] |
S.D. Jacobsen, C.M. Holl, K.A. Adams, R.A. Fischer, E.S. Martin, et al., Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media, Am. Mineral. 93 (2008) 1823.10.2138/am.2008.2988
|
| [61] |
Y. Bi, J. Xu, A Corrected Absolute MgO Pressure Scale up to 65 GPa and the Accuracy of Pressure Determination, unpublished, 2011.
|
| [62] |
S. Sinogeikin, J. Bass, V. Prakapenka, D. Lakshtanov, G. Shen, et al., Brillouin spectrometer interfaced with synchrotron radiation for simultaneous X-ray density and acoustic velocity measurements, Rev. Sci. Instrum. 77 (2006) 103905.10.1063/1.2360884
|
| [63] |
F. Datchi, A. Dewaele, P. Loubeyre, R. Letoullec, Y. LeGodec, et al., Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell, High Press. Res. 27 (2007) 447.10.1080/08957950701659593
|
| [64] |
C.S. Zha, W.A. Bassett, Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and Raman scattering, Rev. Sci. Instrum. 74 (2003) 1255.10.1063/1.1539895
|
| [65] |
J. Xu, H.K. Mao, P.M. Bell, Position-sensitive x-ray diffraction: hydrostatic compressibility of argon, tantalum, and copper 769 kbar, High Temp.-High Press. 16 (1984) 495.
|
| [66] |
J. Xu, E. Huang, J. Lin, L. Xu, Raman study at high pressure and the thermodynamic properties of corundum: application of Kieffer's model, Am. Mineral. 80 (1995) 1157.10.2138/am-1995-11-1206
|
| [67] |
L.S. Dubrovinsky, N.A. Dubrovinskaia, T. Le Bihan, Aggregate sound velocities and acoustic Grüneisen parameter of iron up to 300 GPa and 1200 K, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 9484.10.1073/pnas.161583398
|
| [68] |
T. Kenichi, Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques, J. Appl. Phys. 89 (2001) 662.10.1063/1.1328410
|
| [69] |
R.J. Angel, M. Bujak, J. Zhao, G.D. Gatta, S.D. Jacobsen, Effective hydrostaticity limits pf pressure media for high-pressure crystallographic studies, J. Appl. Crystallogr. 40 (2007) 26.10.1107/s0021889806045523
|
| [70] |
Q. Jing, Y. Bi, Q. Wu, F. Jing, Z. Wang, et al., Yield strength of molybdenum at high pressures, Rev. Sci. Instrum. 78 (2007) 073906.10.1063/1.2758549
|
| [71] |
A.K. Singh, The lattice strains in specimen (cubic system) compressed nonhydrostatically in an opposed anvil device, J. Appl. Phys. 73 (1993) 4278.10.1063/1.352809
|
| [72] |
A.K. Singh, C. Balasigh, The lattice strains in a specimen (hexagonal system) compressed nonhydrostatically in an opposed anvil high pressure setup, J. Appl. Phys. 75 (1994) 4956.10.1063/1.355786
|
| [73] |
A.K. Singh, C. Balasigh, H.K. Mao, R.J. Hemley, J. Shu, Analysis of lattice strains measured under nonhydrostatic pressure, J. Appl. Phys. 83 (1998) 7567.10.1063/1.367872
|
| [74] |
A.K. Singh, T. Kenichi, Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under various fluid pressure-transmitting media, J. Appl. Phys. 90 (2001) 3269.10.1063/1.1397283
|
| [75] |
T. Uchida, N. Funamori, T. Yagi, Lattice strains in crystals under uniaxial stress field, J. Appl. Phys. 80 (1996) 739.10.1063/1.362920
|
| [76] |
D. He, T.S. Duffy, X-ray diffraction study of the static strength of tungsten to 69 GPa, Phys. Rev. B 73 (2006) 134106.10.1103/physrevb.73.134106
|
| [77] |
T.S. Duffy, G. Shen, J. Shu, H.K. Mao, R.J. Hemley, et al., Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa, J. Appl. Phys. 86 (1999) 6729.10.1063/1.371723
|
| [78] |
R.J. Hemley, H.K. Mao, G. Shen, J. Badro, P. Gillet, et al., X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures, Science 276 (1997) 1242.10.1126/science.276.5316.1242
|
| [79] |
A.K. Singh, H.K. Mao, J. Shu, R. Hemley, Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron, Phys. Rev. Lett. 80 (1998) 2157.10.1103/physrevlett.80.2157
|
| [80] |
H.K. Mao, J. Shu, G. Shen, R.J. Hemley, B. Li, et al., Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core, Nature 396 (1998) 741.10.1038/25506
|
| [81] |
A.K. Singh, Analysis of nonhydrostatic high-pressure diffraction data (cubic system): assessment of various assumptions in the theory, J. Appl. Phys. 106 (2009) 043514.10.1063/1.3197213
|
| [82] |
S. Karato, Theory of lattice strain in a material undergoing plastic deformation: Basic formulation and applications to a cubic crystal, Phys. Rev. B 79 (2009) 214106.10.1103/physrevb.79.214106
|
| [83] |
P.A. Turner, C.N. Tome, A study of residual-stresses in zircaloy-2 with rod texture, Acta Metall. Mater. 42 (1994) 4143.10.1016/0956-7151(94)90191-0
|
| [84] |
B. Clausen, T. Lorentzen, T. Leffers, Self-consistent modeling of the plastic-deformation of fcc polycrystals and its implications for diffraction measurements of internal-stresses, Acta Mater. 46 (1998) 3087.10.1016/s1359-6454(98)00014-7
|
| [85] |
D.J. Weidner, L. Li, M. Davis, J.H. Chen, Effect of plasticity on elastic-modulus measurements, Geophys. Res. Lett. 31 (2004) 6621.10.1029/2003gl019090
|
| [86] |
L. Li, D.J. Weidner, J.H. Chen, M.T. Vaughan, M. Davis, et al., X-ray strain analysis at high pressure: effect of plastic deformation in MgO, J. Appl. Phys. 95 (2004) 8357.10.1063/1.1738532
|
| [87] |
S. Merkel, C. Tome, H.R. Wenk, Modeling analysis of the influence of plasticity on high pressure deformation of hcp. Co, Phys. Rev. B 79 (2009) 064110.10.1103/physrevb.79.064110
|
| [88] |
H.K. Mao, J. Badro, J. Shu, R.J. Hemley, A.K. Singh, Strength, anisotropy, and preferred orientation of solid argon at high pressures, J. Phys.: Condens. Matter 18 (2006) S963.10.1088/0953-8984/18/25/s04
|
| [89] |
E. Menendez-Proupin, A.K. Singh, Ab initio calculations of elastic properties of compressed Pt, Phys. Rev. B 76 (2007) 054117.10.1103/physrevb.76.054117
|
| [90] |
K.W. Katahara, M.H. Manghnani, E.S. Fisher, Pressure derivatives of the elastic moduli of bcc titanium-vanadium-chromium, niobium-molybdenum and tantalum-tungsten alloys, J. Phys. F: Met. Phys. 9 (1979) 773.10.1088/0305-4608/9/5/006
|
| [91] |
L. Liu, H.X. Song, H.Y. Geng, Y. Bi, J. Xu, Compressive behaviors of bcc bismuth up to 55 GPa, Phys. Status Solidi B 250 (2013) 1398.10.1002/pssb.201248414
|
| [92] |
L. Liu, H.X. Song, Z.G. Wang, H.Y. Geng, Q. Jing, et al., Strength and equation of state of fluorite phase CeO2 under high pressures, J. Appl. Phys. 112 (2012) 013532.10.1063/1.4736555
|
| [93] |
J.I. Langford, X-ray powder diffraction studies of vitromet samples, J. Appl. Crystallogr. 4 (1971) 159.10.1107/s002188987100654x
|
| [94] |
A.K. Singh, H.P. Liermann, Y. Akahama, H. Kawamura, Aluminum as a pressure-transmitting medium cum pressure standard for X-ray diffraction experiments to 200 GPa with diamond anvil cell, J. Appl. Phys. 101 (2007) 123526.10.1063/1.2734868
|
| [95] |
A.K. Singh, H.P. Liermann, S.K. Saxena, Strength of magnesium oxide under high pressure: evidence for the grain-size dependence, Solid State Commun. 132 (2004) 795.10.1016/j.ssc.2004.09.050
|
| [96] |
A.K. Singh, H.P. Liermann, S.K. Saxena, H.K. Mao, U. Devi, Nonhydrostatic compression of gold powder to 60 GPa in a diamond anvil cell: estimation of compressive strength from X-ray diffraction data, J. Phys.: Condens. Matter 18 (2006) S969.10.1088/0953-8984/18/25/s05
|
| [97] |
A.K. Singh, X-ray diffraction from solids under nonhydrostatic compression-some recent studies, J. Phys. Chem. Solids 65 (2004) 1589.10.1016/j.jpcs.2003.11.044
|
| [98] |
Z. Wang, S.K. Saxena, V. Pischedda, H.P. Liermann, C.S. Zha, In situ X-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2, Phys. Rev. B 64 (2001) 012102.10.1103/physrevb.64.012102
|
| [99] |
L. Gerward, J.S. Olsen, L. Petit, G. Valitheeswaran, V. Kanchana, et al., Bulk modulus of CeO2 and PrO2-an experimental and theoretical study, J. Alloys Compd. 400 (2005) 56.10.1016/j.jallcom.2005.04.008
|
| [100] |
M.I. Eremets, High Pressure Experimental Methods, Oxford University Press, Oxford, 1996, p. 761.
|
| [101] |
B. Chen, A.E. Gleason, J.Y. Yan, K.J. Koski, S. Clark, et al., Elasticity, strength, and refractive index of argon at high pressure, Phys. Rev. B 81 (2010) 144110.10.1103/physrevb.81.144110
|
| [102] |
H. Marquardt, S. Speziale, A. Gleason, S. Sinogeikin, I. Kantor, et al., Brillouin scattering and X-ray diffraction of solid argon to 65 GPa and 700 K: Shear strength of argon at HP/HT, J. Appl. Phys. 114 (2013) 093517.10.1063/1.4820578
|