Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 3
May  2016
Turn off MathJax
Article Contents
Gao Zhe. Compact magnetic confinement fusion: Spherical torus and compact torus[J]. Matter and Radiation at Extremes, 2016, 1(3). doi: 10.1016/j.mre.2016.05.004
Citation: Gao Zhe. Compact magnetic confinement fusion: Spherical torus and compact torus[J]. Matter and Radiation at Extremes, 2016, 1(3). doi: 10.1016/j.mre.2016.05.004

Compact magnetic confinement fusion: Spherical torus and compact torus

doi: 10.1016/j.mre.2016.05.004
  • Received Date: 2016-04-05
  • Accepted Date: 2016-05-20
  • Publish Date: 2016-05-15
  • The spherical torus (ST) and compact torus (CT) are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.
  • loading
  • [1]
    Y.-K.M. Peng, D.J. Strickler, Features of spherical torus plasmas, Nucl. Fusion 26 (1986) 769.10.1088/0029-5515/26/6/005
    [2]
    B.E. Nelson, L.A. Berry, A.B. Brooks, M.J. Cole, J.C. Chrzanowski, et al., Design of the national compact stellarator experiment (NCSX), Fusion Eng. Des. 66-68 (2003) 169.10.1016/s0920-3796(03)00183-2
    [3]
    T.J. Dolan, Progress in compact toroid experiments, in: Problems of Atomic Science and Technology Series: Plasma Physics 7, 2002, p. 34.
    [4]
    T. Intrator, M. Nagata, A. Hoffman, H. Guo, L. Steinhauer, et al., Summary of US–Japan exchange 2004: New directions and physics for compact toroids, J. Fusion Energy 23 (2004) 175.10.1007/s10894-005-5597-9
    [5]
    Y.-K.M. Peng, The physics of spherical torus plasmas, Phys. Plasmas 7 (2000) 1681.10.1063/1.874048
    [6]
    T. Maekawa, Y. Terumichi, H. Tanaka, M. Uchida, T. Yoshinaga, et al., Formation of spherical tokamak equilibria by ECH in the LATE device, Nucl. Fusion 45 (2005) 1439.10.1088/0029-5515/45/11/026
    [7]
    A. Sykes, The spherical tokamak programme at Culham, Nucl. Fusion 39 (1999) 1271.10.1088/0029-5515/39/9y/305
    [8]
    J. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, NY, 2007, p. 412.
    [9]
    M.P. Gryaznevich, S.E. Sharapov, Perturbative and non-perturbative modes in START and MAST, Nucl. Fusion 46 (2006) S942.10.1088/0029-5515/46/8/s02
    [10]
    E.D. Fredrickson, N.A. Crocker, D.S. Darrow, N.N. Gorelenkov, G.J. Kramer, et al., Fast-ion energy loss during TAE avalanches in the National spherical torus experiment, Nucl. Fusion 53 (2013) 013006.10.1088/0029-5515/53/1/013006
    [11]
    A. Sykes, R.J. Akers, L.C. Appel, P.G. Carolan, G.F. Counsell, et al., First results from MAST, Nucl. Fusion 41 (2001) 1423.10.1088/0029-5515/41/10/310
    [12]
    R. Raman, T.R. Jarboe, D. Mueller, M.J. Schaffer, R. Maqueda, et al., Non-inductive current generation in NSTX using coaxial helicity injection, Nucl. Fusion 41 (2001) 1081.10.1088/0029-5515/41/8/311
    [13]
    Y. Takase, A. Ejiri, H. Kakuda, T. Oosako, T. Shinya, et al., Non-inductive plasma initiation and plasma current ramp-up on the TST-2 spherical tokamak, Nucl. Fusion 53 (2013) 063006.10.1088/0029-5515/53/6/063006
    [14]
    G. Taylor, J.C. Hosea, C.E. Kessel, B. LeBlanc, D. Mueller, et al., High non-inductive fraction H-mode discharges generated by high-harmonic fast wave heating and current drive in the national spherical torus experiment, Phys. Plasmas 19 (2012) 042501.10.1063/1.3699364
    [15]
    D.R. Smith, E. Mazzucato, W. Lee, H.K. Park, C.W. Domier, et al., A collective scattering system for measuring electron gyroscale fluctuations on the National spherical torus experiment, Rev. Sci. Instrum. 79 (2008) 123501.10.1063/1.3039415
    [16]
    H.Y. Yuh, S.M. Kaye, F.M. Levinton, E. Mazzucato, D.R. Mikkelsen, et al., Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX, Phys. Rev. Lett. 106 (2011) 055003.10.1103/physrevlett.106.055003
    [17]
    W. Guttenfelder, J. Candy, S.M. Kaye, W.M. Nevins, E. Wang, et al., Simulation of microtearing turbulence in national spherical torus experiment, Phys. Plasmas 19 (2012) 056119.10.1063/1.3694104
    [18]
    M. Ono, S.M. Kaye, Y.-K.M. Peng, G. Barnes, W. Blanchard, et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (2000) 557.10.1088/0029-5515/40/3y/316
    [19]
    S.M. Kaye, M. Ono, Y.-K.M. Peng, M.D. Carter, E.F. Jaeger, et al., Physics design of the national spherical torus experiment, Fusion Technol. 36 (1999) 16.
    [20]
    V.K. Gusev, S.E. Aleksandrov, V. Kh Alimov, I.I. Arkhipov, B.B. Aushin, et al., Overview of results obtained at the Globus-M spherical tokamak, Nucl. Fusion 49 (2009) 104021.10.1088/0029-5515/49/10/104021
    [21]
    K. Hanada, K.N. Sato, H. Zushi, K. Nakamura, M. Sakamoto, et al., Steady-state operation scenario and the first experimental result on QUEST, Plasma Fusion Res. 5 (2010) S1007.10.1585/pfr.5.s1007
    [22]
    G.D. Garstka, S.J. Diem, R.J. Fonck, M. Kissick, B. Lewicki, et al., Performance and stability of near-unity aspect ratio plasmas in the Pegasus toroidal experiment, Phys. Plasmas 10 (2003) 1705.10.1063/1.1559972
    [23]
    R. Majeski, J.-W. Ahn, L. Berzak, T. Gray, R. Kaita, et al., Performance projections for the lithium tokamak experiment (LTX), Nucl. Fusion 49 (2009) 055014.10.1088/0029-5515/49/5/055014
    [24]
    J. Redd, B.A. Nelson, T.R. Jarboe, W.T. Hamp, V.A. Izzo, et al., Current drive experiments in the helicity injected torus (HIT-II), Phys. Plasmas 9 (2002) 2006.10.1063/1.1448832
    [25]
    Y. Takase, A. Ejiri, N. Kasuya, T. Mashiko, S. Shiraiwa, et al., Initial results from the TST-2 spherical tokamak. , Nucl. Fusion 41 (2001) 1543.10.1088/0029-5515/41/11/303
    [26]
    Y. Ono, T. Kimura, E. Kawamori, Y. Murata, S. Miyazaki, et al., High-beta characteristics of first and second-stable spherical tokamaks in reconnection heating experiments of TS-3, Nucl. Fusion 43 (2003) 789.10.1088/0029-5515/43/8/321
    [27]
    T. Yamada, R. Imazawa, S. Kamio, R. Hihara, K. Abe, et al., Merging startup experiments on the UTST spherical tokamak, Plasma Fusion Res. 5 (2010) S2100.10.1585/pfr.5.s2100
    [28]
    M. Nagata, T. Kanki, N. Fukumoto, T. Uyama, The internal magnetic field structures and current density profiles in the helicity injected spherical torus plasma driven by coaxial helicity injection, Phys. Plasmas 10 (2003) 2932.10.1063/1.1580815
    [29]
    Y.X. He, A research program of spherical tokamak in China, Plasma Sci. Technol. 4 (2002) 1355.10.1088/1009-0630/4/4/003
    [30]
    K.J. Chung, Y.H. An, B.K. Jung, H.Y. Lee, C. Sung, et al., Design Features and commissioning of the versatile experiment spherical torus (VEST) at Seoul National University, Plasma Sci. Technol. 15 (2013) 244.10.1088/1009-0630/15/3/11
    [31]
    G.O. Ludwig, E. Del Bosco, J.G. Ferreira, Eddy currents in the vacuum vessel of the ETE spherical tokamak, Nucl. Fusion 45 (2005) 675.10.1088/0029-5515/45/7/017
    [32]
    F. Alladio, P. Costa, A. Mancuso, P. Micozzi, S. Papastergiou, et al., Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH), Nucl. Fusion 46 (2006) S613.10.1088/0029-5515/46/8/s07
    [33]
    S. Hussain, M. Sadiq, S.I.W. Shah, Estimation of electron temperature on glass spherical tokamak (GLAST), J. Phys. Conf. Ser. 591 (2015) 012009.10.1088/1742-6596/591/1/012009
    [34]
    M. Ono, R. Kaita, Recent progress on spherical torus research, Phys. Plasmas 22 (2015) 040501.10.1063/1.4915073
    [35]
    J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett. 33 (1974) 1139.10.1103/physrevlett.33.1139
    [36]
    J.B. Taylor, Relaxation and magnetic reconnection in plasmas, Rev. Mod. Phys. 58 (1986) 741.10.1103/revmodphys.58.741
    [37]
    M. Yamada, H.P. Furth, T.H. Stix, A.M.M. Todd, Method and Apparatus for the Formation of a Spheromak Plasma, 1982. US Patent No. 4363776A.
    [38]
    B. Hudson, R.D. Wood, H.S. McLean, E.B. Hooper, D.N. Hill, et al., Energy confinement and magnetic field generation in the SSPX spheromak, Phys. Plasmas 15 (2008) 056112.10.1063/1.2890121
    [39]
    E.B. Hooper, T.K. Fowler, Spheromak reactor: Physics opportunities and issues, Fusion Tech. 30 (1996) 1390.
    [40]
    E.B. Hooper, Physics issues of a spheromak refluxing scenario, Plasma Phys. Controlled Fusion 54 (2011) 113001.
    [41]
    M.G. Rusbridge, S.J. Gee, P.K. Browning, et al., The design and operation of the SPHEX spheromak, Plasma Phys. Controlled Fusion 39 (1997) 683.10.1088/0741-3335/39/5/003
    [42]
    E. Coomer, C.W. Hartman, E. Morse, D. Reisman, An experimental and computational study of compact torus formation, decay and heating in the Berkeley compact torus experiment, Nucl. Fusion 40 (2000) 1669.10.1088/0029-5515/40/9/310
    [43]
    M.R. Brown, C.D. Cothran, D. Cohen, J. Horwitz, V. Chaplin, Flow dynamics and plasma heating of spheromaks in SSX, J. Fusion Energy 27 (2008) 16.10.1007/s10894-007-9097-y
    [44]
    D.Q. Hwang, H.S. McLean, K.L. Baker, R.W. Evans, R.D. Horton, et al., Interaction of a spheromak-like compact toroid with a high beta spherical tokamak plasma, Nucl. Fusion 40 (2000) 897.10.1088/0029-5515/40/5/302
    [45]
    T.R. Jarboe, C. Akcay, M.A. Chilenski, D.A. Ennis, C.J. Hansen, et al., Recent results from the HIT-SI experiment, Nucl. Fusion 51 (2011) 063029.10.1088/0029-5515/51/6/063029
    [46]
    S.C. Hsu, P.M. Bellan, Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation, Phys. Rev. Lett. 90 (2003) 215002.10.1103/physrevlett.90.215002
    [47]
    E. Kawamori, Y. Ono, Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration, Phys. Rev. Lett. 95 (2005) 085003.10.1103/physrevlett.95.085003
    [48]
    P.M. Bellan, Spheromaks (Imperial College Press, London, UK2000).
    [49]
    T.R. Jarboe, Review of spheromak research, Plasma Phys. Controlled Fusion 36 (1994) 945.10.1088/0741-3335/36/6/002
    [50]
    U.S. Fusion Energy Sciences Advisory Committee: Report of the FESAC Toroidal Alternates Panel, 2008. David Hill (Chair), Richard Hazeltine (Vice Chair) http://science.energy.gov/∼/media/fes/fesac/pdf/2008/Toroidal_alternates_panel_report.pdf.
    [51]
    L.C. Steinhauer, A. Ishida, Relaxation of a two-specie magnetofluid, Phys. Rev. Lett. 79 (1997) 3423.10.1103/physrevlett.79.3423
    [52]
    L.C. Steinhauer, A. Ishida, Relaxation of a two-species magnetofluid and application to finite-β flowing plasmas, Phys. Plasmas 5 (1998) 2609.10.1063/1.872948
    [53]
    H. Yamada, T. Katano, K. Kanai, A. Ishida, L.C. Steinhauer, Equilibrium analysis of a flowing two-fluid plasma, Phys. Plasmas 9 (2002) 4605.10.1063/1.1510125
    [54]
    J. Cobb, T. Tajima, D.C. Barnes, Profile stabilization of tilt mode in a field-reversed configuration, Phys. Fluids B 5 (1993) 3227.10.1063/1.860658
    [55]
    L.C. Steinhauer, A. Ishida, R. Kanno, Ideal stability of a toroidal confinement system without a toroidal magnetic field, Phys. Plasmas 1 (1994) 1523.10.1063/1.870703
    [56]
    R. Kanno, A. Ishida, L.C. Steinhaue, Ideal-magnetohydrodynamic-stable tilting in field-reversed configurations, J. Phys. Soc. Jpn. 64 (1995) 463.10.1143/jpsj.64.463
    [57]
    D.C. Barnes, J.L. Schwarzmeier, H.R. Lewis, C.E. Seyler, Kinetic tilting stability of field reversed configurations, Phys. Fluids 29 (1986) 2616.10.1063/1.865503
    [58]
    A. Ishida, R. Kanno, L.C. Steinhauer, Tilt stability of a gyroviscous field-reversed configuration with realistic equilibria, Phys. Fluids 4 (1992) 1280.10.1063/1.860083
    [59]
    R.N. Sudan, Stability of field-reversed, force-free, plasma equilibria with mass flow. , Phys. Rev. Lett. 42 (1979) 1277.10.1103/physrevlett.42.1277
    [60]
    U. Shumlak, C.W. Hartman, Sheared flow stabilization of the m = 1 kink mode in Z pinches, Phys. Rev. Lett. 75 (1995) 3285.10.1103/physrevlett.75.3285
    [61]
    C. Litwin, R.N. Sudan, Effect of a strong-current ion ring on spheromak stability, Phys. Fluids 31 (1988) 423.10.1063/1.866823
    [62]
    J.T. Slough, A.L. Hoffman, Experimental study of the formation of field-reversed configurations employing high-order multipole fields, Phys. Fluids B 2 (1990) 797.10.1063/1.859316
    [63]
    B.B. Bogdanov, E.M. Golenev, P. Yu Ishkhanov, R. kh. Kurtmullaev, Ya, N. Laukhin, et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990 (IAEA, Vienna, 1990), Vol. 2, p. 739.
    [64]
    Y. Ono, Slow formation of field-reversed configuration by use of two merging spheromaks, Trans. Fusion Technol. 27 (1995) 369.
    [65]
    I. Jones, A review of rotating magnetic field current drive and the operation of the rotamak as a field-reversed configuration (Rotamak-FRC) and a spherical tokamak (Rotamak-ST), Phys. Plasmas 6 (1999) 1950.10.1063/1.873452
    [66]
    A.L. Hoffman, H.Y. Guo, K.E. Miller, R.D. Milroy, Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive, Nucl. Fusion 21 (2005) 003.
    [67]
    H.Y. Guo, M.W. Binderbauer, T. Jajima, R.D. Milroy, L.C. Steinhauer, et al., Achieving a long-lived high-beta plasma state by energetic beam injection, Nat. Commun. 6 (2015) 6897.10.1038/ncomms7897
    [68]
    J.A. Grossnickle, R.D. Brooks, C.L. Deards, A.L. Hoffman, P.A. Melnik, et al., Operation of TCSU with internal flux-conserving rings, J. Fusion Energy 29 (2010) 517.10.1007/s10894-010-9320-0
    [69]
    S.A. Cohen, R.D. Milroy, Maintaining the closed magnetic-field-line topology of a field-reversed configuration with the addition of static transverse magnetic fields, Phys. Plasmas 7 (2000) 2539.10.1063/1.874094
    [70]
    M. Tuszewski, D.P. Taggart, R.E. Chrien, D.J. Rej, R.E. Siemon, et al., Axial dynamics in field-reversed theta pinches. II: Stability, Phys. Fluids B 3 (1991) 2856.10.1063/1.860000
    [71]
    T. Munsat, C.L. Ellison, A. Light, The Colorado FRC experiment, J. Fusion Energy 27 (2008) 82.10.1007/s10894-007-9108-z
    [72]
    C.D. Cothran, A. Falk, A. Fefferman, M. Landreman, M. Brown, et al., Spheromak merging and field reversed configuration formation at the Swarthmore Spheromak experiment, Phys. Plasmas 10 (2003) 1748.10.1063/1.1564084
    [73]
    J. Slough, S. Andreason, H. Gota, C. Pihl, G. Votroubek, et al., The pulsed high density experiment: Concept, design, and initial results, J. Fusion Energy 26 (2007) 199.10.1007/s10894-006-9058-x
    [74]
    S.P. Gerhardt, E. Belova, M. Inomoto, M. Yamada, H. Ji, et al., Equilibrium and stability studies of oblate field-reversed configurations in the magnetic reconnection experiment, Phys. Plasmas 13 (2006) 112508.10.1063/1.2360912
    [75]
    M. Tuszewski, Field reversed configurations, Nucl. Fusion 28 (1988) 2033.10.1088/0029-5515/28/11/008
    [76]
    L.C. Steinhauer, Review of field-reversed configurations, Phys. Plasmas 18 (2011) 070501.10.1063/1.3613680
    [77]
    T.J. Dolan, Fusion Research: Principle, Elsevier Science, Saint Louis, 2013.
    [78]
    S. Woodruff, Technical survey of simply connected compact tori (CTs): Spheromaks, FRCs and compression schemes, J. Fusion Energy 27 (2008) 134.10.1007/s10894-007-9099-9
    [79]
    G.A. Collins, G. Durance, G.R. Hogg, J. Tendys, P.A. Watterson, Small aspect ratio tokamak configurations generated by rotating magnetic-field current drive, Nucl. Fusion 28 (1988) 255.10.1088/0029-5515/28/2/007
    [80]
    H. Bruhns, R. Brendel, G. Raupp, J. Steiger, Study of the low aspect ratio limit Tokamak in the Heidelberg Spheromak experiment, Nucl. Fusion 27 (1987) 2178.10.1088/0029-5515/27/12/017
    [81]
    P.K. Browning, G. Cunningham, R. Duck, S.J. Gee, K.J. Gibson, et al., Injection and sustainment of plasma in a preexisting toroidal field using a coaxial helicity source, Phys. Rev. Lett. 68 (1992) 1722.10.1103/physrevlett.68.1722
    [82]
    A. Morita, Y. Ono, M. Katsurai, M. Yamada, S. Yoshikawa, et al., Experimental investigation on tilt stabilizing effect of external toroidal field in low aspect ratio tokamak, Phys. Plasmas 4 (1997) 315.10.1063/1.872092
    [83]
    S. Woodruff, M. Brown, E.B. Hooper, R. Milroy, M. Schaffer, Why compact Tori for fusion?, J. Fusion Energy 29 (2010) 447.10.1007/s10894-010-9303-1
    [84]
    F. Najmabadi, J. Drake, J. Freidberg, D. Hill, M. Mauel, et al., Alternative concepts: a report to the fusion energy sciences advisory committee, J. Fusion Energy 15 (1996) 249.10.1007/bf02266935
    [85]
    BPO ReNeW report: Rich Hazeltine (Chair). David Hill (Vice Chair) http://burningplasma.org/web/renew.html.
    [86]
    G.M. Voss, S. Davis, A. Dnestrovskij, A. Kirk, P.J. Knight, et al., Conceptual design of a component test facility based on the spherical tokamak, Fusion Eng. Des. 83 (2008) 1648.10.1016/j.fusengdes.2008.05.002
    [87]
    J.E. Menard, L. Bromberg, T. Brown, T. Burgess, D. Dix, et al., Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator, Nucl. Fusion 51 (2011) 103014.10.1088/0029-5515/51/10/103014
    [88]
    Y.K.M. Peng, J.M. Canik, S.J. Diem, S.L. Milora, J.M. Park, et al., Fusion nuclear science facility (FNSF) before upgrade to component test facility (CTF), Fusion Sci. Tech. 60 (2011) 441.10.13182/fst60-441
    [89]
    R. Raman, F. Martin, B. Quirion, M. St-Onge, J. Lachambre, et al., Experimental demonstration of nondisruptive, central fueling of a tokamak by compact toroid injection, Phys. Rev. Lett. 73 (1994) 3101.10.1103/physrevlett.73.3101
    [90]
    D. Buchenauer, W.M. Clift, R. Klauser, R.D. Horton, S.J. Howard, et al., Impurity production and acceleration in CTIX, J. Nucl. Mater 223 (2009) 390.10.1016/j.jnucmat.2009.01.058
    [91]
    M. Bakhtiari, G.J. Kramer, M. Takechi, H. Tamai, Y. Miura, et al., Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks, Phys. Rev. Lett. 94 (2005) 215003.10.1103/physrevlett.94.215003
    [92]
    R.D. Horton, D.Q. Hwang, S. Howard, S.J. Brockington, R.W. Evans, Poloidal field amplification in a coaxial compact toroid accelerator, Nucl. Fusion 48 (2008) 095002.10.1088/0029-5515/48/9/095002
    [93]
    C. Xiao, A. Hirose, S. Sen, Improved confinement induced by tangential injection of compact torus into the Saskatchewan torus-modified (STOR-M) tokamak, Phys. Plasmas 11 (2004) 4041.10.1063/1.1768177
    [94]
    Y. Ono, H. Tanabe, T. Yamada, M. Inomoto, T. Ii, et al., Ion and electron heating characteristics of magnetic reconnection in tokamak plasma merging experiments, Plasma Phys. Controlled Fusion 54 (2012) 124039.10.1088/0741-3335/54/12/124039
    [95]
    Y. Ono, H. Tanabe, T. Yamada, K. Gi, T. Watanabe, et al., High power heating of magnetic reconnection in merging tokamak experiments, Phys. Plasmas 22 (2015) 055708.10.1063/1.4920944
    [96]
    M. Gryaznevich, Merging/compression plasma formation in Spherical Tokamaks, at 18th International Spherical Torus Workshop (ISTW 2015), Princeton US. http://nstx.pppl.gov/DragNDrop/Scientific_Conferences/ST_Workshop/STW15-Princeton/presentations/Orals/.
    [97]
    A. Lampasi, G. Maffia, F. Alladio, L. Boncagni, L.A. Grosso, et al., Commissioning of the plasma central column for the PROTO-SPHERA spherical tokamak, in: IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), 2015, p. 587.
    [98]
    R.C. Kirkpatrick, I.R. Lindemuth, M.S. Ward, Magnetized target fusion: An overview, Fusion Technol. 27 (1995) 201.10.13182/fst95-a30382
    [99]
    K. F. Schoenberg and R. E. Siemon. Magnetized Target Fusion: A Proof-of-principle Research Proposal, LA-UR-98-2413, http://fusionenergy.lanl.gov/Documents/MTF/mtf_pop_proposal.pdf.
    [100]
    P. McGrath, ALPHA: Accelerating Low-Cost Plasma Heating and Assembly, at Fusion Power Associates 36th Annual Meeting and Symposium Strategies to Fusion Power 2015, http://fire.pppl.gov/fpa15_ALPHA_Mcgrath.pptx.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (70) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return