Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 3
May  2016
Turn off MathJax
Article Contents
Hong Dunpin, Rabat Hervé, Le Menn Erwan, Zaepffel Clément, Bauchire Jean-Marc. Compact Z-pinch radiation source dedicated to broadband absorption measurements[J]. Matter and Radiation at Extremes, 2016, 1(3). doi: 10.1016/j.mre.2016.05.003
Citation: Hong Dunpin, Rabat Hervé, Le Menn Erwan, Zaepffel Clément, Bauchire Jean-Marc. Compact Z-pinch radiation source dedicated to broadband absorption measurements[J]. Matter and Radiation at Extremes, 2016, 1(3). doi: 10.1016/j.mre.2016.05.003

Compact Z-pinch radiation source dedicated to broadband absorption measurements

doi: 10.1016/j.mre.2016.05.003
More Information
  • Corresponding author: *Corresponding author. E-mail address: dunpin.hong@univ-orleans.fr (D. Hong).
  • Received Date: 2016-04-08
  • Accepted Date: 2016-05-07
  • Publish Date: 2016-05-15
  • In order to acquire a broadband absorption spectrum in a single shot, a compact radiation source was developed by using a Z-pinch type electric discharge. This paper presents the mechanical and electrical construction of the source, as well as its electrical and optical characteristics, including the intense continuum of radiation emitted by the source in the UV and visible spectral range. It also shows that the compactness of the source allows direct coupling with the probed medium, enabling broadband absorption measurement in the spectral range of 200–300 nm without use of an optical fiber which strongly attenuates the light in the short wavelength range. Concretely, thanks to this source, broadband spectral absorption of NO molecules around 210 nm and that of OH molecules around 310 nm were recorded in this direct coupling arrangement. Copper atom spectral absorption around 325 nm of the peripheral cold zones of an intense transient arc was also recorded.
  • loading
  • [1]
    H.R. Griem, Plasma Spectroscopy, McGraw-Hill, New York, 1964.
    [2]
    R.P. Cardoso, T. Belmonte, G. Henrion, N. Sadeghi, Influence of trace oxygen on He (2 3S) density in a He-O2 microwave discharge at atmospheric pressure: behaviour of the time afterglow, J. Phys. D. Appl. Phys. 39 (2006) 4178–4185.10.1088/0022-3727/39/19/009
    [3]
    H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, Experimental study and calculations of nitric oxide absorption in the γ (0,0) and γ (1,1) bands for strong temperature conditions, J. Quant. Spectrosc. Radiat. Transfer 90 (2005) 275–289.10.1016/j.jqsrt.2004.03.017
    [4]
    D. Hong, G. Sandolache, K. Lan, J.M. Bauchire, E. Le Menn, et al., A radiation source developed for broad band optical absorption spectroscopy measurements, Plasma Sources Sci. Technol. 12 (2003) 1–7.10.1088/0963-0252/12/1/301
    [5]
    M. Liberman, J. De Groot, A. Toor, R. Spielman, Physics of High-density Z-pinch Plasmas, Springer-Verlag, Berlin Heidelberg, New York, 1999.
    [6]
    J.J. Rocca, V. Shlyaptsev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, et al., Demonstration of a discharge pumped table-top soft-X-ray laser, Phys. Rev. Lett. 73 (1994) 2192–2195.10.1103/physrevlett.73.2192
    [7]
    J.J. Rocca, D.P. Clark, J.L.A. Chilla, V.N. Shlyaptsev, Energy extraction and achievement of the saturation limit in a discharge-pumped table-top soft X-ray amplifier, Phys. Rev. Lett. 77 (1996) 1476–1479.10.1103/physrevlett.77.1476
    [8]
    T. Wagner, E. Eberl, K. Frank, W. Hartmann, D.H.H. Hoffmann, et al., XUV amplification in a recombining z-pinch plasma, Phys. Rev. Lett. 76 (17) 3124–3127.10.1103/physrevlett.76.3124
    [9]
    K. Kolaceka, J. Schmidta, V. Pruknera, O. Frolova, J. Strausa, Ways to discharge-based soft X-ray lasers with the wavelength lambda <15 nm, Laser Part. Beams 26 (2) 167–178.10.1017/s0263034608000190
    [10]
    Y. Zhao, S. Jiang, Y. Xie, D. Yang, S. Teng, et al., Demonstration of soft X-ray, laser of Ne-like Ar at 69.8 nm pumped by capillary discharge, Opt. Lett. 36 (17) (2011) 3458–3460.10.1364/ol.36.003458
    [11]
    Y. Xie, Y. Zhao, S. Jiang, Q. Wang, The spectrum of Ne-Like Ar and the 4d-4p transition of Kr7+ at 45 nm in capillary discharge experiment, Spectrosc. Lett. 44 (4) (2011) 273–277.10.1080/00387010.2010.517232
    [12]
    K. Lan, Y. Zhang, W. Zheng, Theoretical study on discharge-pumped soft X-ray laser in Ne-like Ar, Phys. Plasma 6 (1999) 4343–4348.10.1063/1.873698
    [13]
    A. Esaulov, P. Sasorov, L. Soto, M. Zambra, J. Sakai, MHD simulation of a fast hollow cathode capillary discharge, Plasma Phys. Controlled Fusion 43 (2001) 571–588.10.1088/0741-3335/43/4/313
    [14]
    R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, et al., Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ, Phys. Plasmas 5 (5) (1998) 2105–2111.10.1063/1.872881
    [15]
    T.W. Sanford, R.E. Olson, R.L. Bowers, G.A. Chandler, M.S. Derzon, et al., Z-pinch-generated X-rays demonstrate potential for indirect-drive ICF experiments, Phys. Rev. Lett. 83 (1999) 5511–5514.10.1103/physrevlett.83.5511
    [16]
    J. Deng, W. Xie, S. Feng, M. Wang, H. Liet al., et al., Initial performance of the primary test stand, IEEE Trans. Plasma Sci. 41 (10) (2013) 2580–2583.10.1109/tps.2013.2274154
    [17]
    J. Deng, W. Xie, S. Feng, M. Wang, H. Liet al., et al., From concept to reality—A review to the primary test stand and its preliminary application in high energy density physics, Matter Radiat. Extremes 1 (2016) 48–58.10.1016/j.mre.2016.01.004
    [18]
    C. Chenais-Popovics, Astrophysics in laboratory: opacity measurements, Laser Part. Beams 20 (2) 291–298.10.1017/s0263034602202207
    [19]
    P.F. Knapp, S.A. Pikuz, T.A. Shelkovenko, D.A. Hammer, S.B. Hansen, High resolution absorption spectroscopy of exploding wire plasmas using an X-pinch X-ray source and spherically bent crystal, Rev. Sci. Instrum. 82 (2011) 063501.10.1063/1.3592582
    [20]
    W. Rosenfeld, R. Dussart, S. Gotze, C. Cachoncinelle, D. Hong, et al., Development of a Blumlein generator dedicated to a fast capillary discharge created XUV source, in: 44th Annual SPIE Meeting, Denver (USA), 1999, pp. 19–23.
    [21]
    C. Fleurier, J. Mathias, B. Dumax, J.C. Pellicer, A. Bonnet, et al., Fast valve for ion beam-plasma interaction, Nucl. Instrum. Methods Phys. Res., Sect. B 61 (1991) 236–238.10.1016/0168-583x(91)95468-s
    [22]
    Specair: available commercially at http://www.specair-radiation.net/index.php.
    [23]
    Y. Cressault, J.M. Bauchire, D. Hong, H. Rabat, G. Riquel, et al., Radiation of long and high power arcs, J. Phys. D. Appl. Phys. 48 (2015) 415201.10.1088/0022-3727/48/41/415201
    [24]
    H. Rabat, D. Hong, J.M. Bauchire, G. Riquel, High speed imaging and radiative energy measurements of a high-current pulsed arc in air, IEEE Trans. Plasma Sci. 39 (11) (2011) 2854–2855.10.1109/tps.2011.2116043
    [25]
    J.M. Bauchire, D. Hong, H. Rabat, G. Riquel, Radiation of transient high-current arcs: Energy measurements in the optical range, J. Phys.: Conf. Ser. 406 (2012) 012030.10.1088/1742-6596/406/1/012030
    [26]
    D. Hong, G. Sandolache, J.M. Bauchire, F. Gentils, C. Fleurier, A new optical technique for investigations of low-voltage circuit breakers, IEEE Trans. Plasma Sci. 33 (2) (2005) 976–981.10.1109/tps.2005.844488
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (95) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return