Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 3
May  2016
Turn off MathJax
Article Contents
Zhang Jiande, Ge Xingjun, Zhang Jun, He Juntao, Fan Yuwei, Li Zhiqiang, Jin Zhenxing, Gao Liang, Ling Junpu, Qi Zumin. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3). doi: 10.1016/j.mre.2016.04.001
Citation: Zhang Jiande, Ge Xingjun, Zhang Jun, He Juntao, Fan Yuwei, Li Zhiqiang, Jin Zhenxing, Gao Liang, Ling Junpu, Qi Zumin. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3). doi: 10.1016/j.mre.2016.04.001

Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT

doi: 10.1016/j.mre.2016.04.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: gexingjun230230@aliyun.com (X.J. Ge).
  • Received Date: 2015-11-03
  • Accepted Date: 2016-03-29
  • Publish Date: 2016-05-15
  • Research progresses on Cherenkov and transit-time high-power microwave (HPM) sources in National University of Defense Technology (NUDT) of China are presented. The research issues are focused on the following aspects. The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed. The compact coaxial relativistic backward-wave oscillators (RBWOs) at low bands are developed. The power efficiency in M-Type HPM tubes without guiding magnetic field increased. The power capacities and power efficiencies in the triaxial klystron amplifier (TKA) and relativistic transit-time oscillator (TTO) at higher frequencies increased. In experiments, some exciting results were obtained. The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode. Both L- and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%. There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions. A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%. A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB. A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.
  • loading
  • [1]
    S.A. Kitsanov, A.I. Klimov, S.D. Korovin, I.K. Kurkan, I.V. Pegel, et al., S-Band resonant BWO with 5 GW pulse power, Tech. Phys. Lett. 650 (2002) 255–258.
    [2]
    C.H. Chen, G.Z. Liu, W.H. Huang, Z.M. Song, J.P. Fan, et al., A repetitive X-band relativistic backward-wave oscillator, IEEE Trans. Plasma Sci. 30 (3) (2002) 1108–1111.10.1109/tps.2002.801656
    [3]
    J. Zhang, H.H. Zhong, Z.X. Jin, T. Shu, S.G. Cao, et al., Studies on efficient operation of an X-band oversized slow-wave HPM generator in low magnetic field, IEEE Trans. Plasma Sci. 37 (8) (2009) 1552–1557.10.1109/tps.2009.2022758
    [4]
    A.I. Klimov, I.K. Kurkan, S.D. Polevin, V.V. Rostov, E.M. Tot'meninov, A multigigawatt X-Band relativistic backward wave oscillator with a modulating resonant reflector, Tech. Phys. Lett. 34 (3) (2008) 235–237.10.1134/s1063785008030176
    [5]
    R.Z. Xiao, X.W. Zhang, L.J. Zhang, X.Z. Li, L.G. Zhang, et al., Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator, Laser Part. Beams 28 (3) (2010) 505–511.10.1017/s0263034610000509
    [6]
    K. Hahn, M.I. Fuks, E. Schamiloglu, Initial studies of a long-pulse relativistic backward-wave oscillator utilizing a disk cathode, IEEE Trans. Plasma Sci. 30 (3) (2002) 1112–1119.10.1109/tps.2002.801628
    [7]
    S.D. Korovin, G.A. Mesyats, I.V. Pegel, S.D. Polevin, V.P. Tarakanov, Pulsewidth limitation in the relativistic backward wave oscillator, IEEE Trans. Plasma Sci. 28 (3) (2000) 485–495.
    [8]
    F.J. Agee, Evolution of pulse shortening research in narrow band, high power microwave sources, IEEE Trans. Plasma Sci. 26 (3) (1998) 235–245.10.1109/27.700749
    [9]
    F. Hegeler, E. Schamiloglu, S.D. Korovin, V.V. Rostov, Recent advance in the study of a long pulse relativistic backward wave oscillator. , in: Proc.12th IEEE Intern. Pulsed Power Conf. Monterrey California, 1999, pp. 825–828.
    [10]
    A.V. Gunin, V.F. Landl, S.D. Korovin, G.A. Mesyats, I.V. Pegel, et al., Experimental studies of long-lifetime cold cathodes for high-powermicrowave oscillators, IEEE Trans. Plasma Sci. 28 (3) (2000) 537–541.10.1109/27.887668
    [11]
    S.D. Polevin, S.D. Korovin, I.K. Kurkan, et al., Pulse lengthening of S-band resonant relativistic BWO, in: 13th International Symposium on High Current Electronics Proceeding, Tomsk, Russia, 2004, pp. 246–250.
    [12]
    R.Z. Xiao, C.H. Chen, J. Sun, X.W. Zhang, L.J. Zhang, A high-power high-efficiency klystronlike relativistic backward wave oscillator with a dual-cavity extractor, Appl. Phys. Lett. 98 (2011) 101502.10.1063/1.3562612
    [13]
    R.Z. Xiao, Z.M. Song, Y.Q. Deng, C.H. Chen, Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal, Phys. Plasmas 21 (9) (2014) 093108.10.1063/1.4895598
    [14]
    M.D. Haworth, K.E. Allen, G. Baca, J.N. Benford, T.J. Englert, et al., Recent progress in the hard-tube MILO experiment, Proc. SPIE Int. Soc. Opt. Eng. 3158 (1997) 28–39.
    [15]
    M.D. Haworth, G. Baca, J. Benford, T. Englert, K. Hackett, et al., Significant pulse-lengthening in a multigigawatt magnetically insulated transmission line oscillator, Plasma Sci. IEEE Trans. 26 (3) (1998) 312–319.10.1109/27.700759
    [16]
    J.W. Eastwood, K.C. Hawkins, M.P. Hook, The tapered MILO, IEEE Trans. Plasma Sci. 26 (3) (1998) 698–713.10.1109/27.700810
    [17]
    Z.Q. Li, H.H. Zhong, Y.W. Fan, T. Shu, J.H. Yang, et al., Particle simulation and experimental research of S-band tapered magnetically insulated transmission line oscillator, High Power Laser Part. Beams 20 (1) (2008) 123–126.
    [18]
    Y.W. Fan, T. Shu, Y. Wang, Z.Q. Li, J.J. Zhou, et al., Experimental design of a compact Lband magnetically insulated transmission line oscillator, High Power Laser Part. Beams 16 (6) (2004) 767–769.
    [19]
    Y.W. Fan, C.W. Yuan, H.H. Zhong, T. Shu, J.D. Zhang, et al., Experimental investigation of an improved MILO, IEEE Trans. Plasma Sci. 35 (4) (2007) 1075–1080.10.1109/tps.2007.902026
    [20]
    Y.W. Fan, H.H. Zhong, Z.Q. Li, T. Shu, H.W. Yang, et al., Investigation of an X-band magnetically insulated transmission line oscillator, Chin. Phys. B 17 (5) (2008) 1804–1808.10.1088/1674-1056/17/5/042
    [21]
    Y.W. Fan, H.H. Zhong, H.W. Yang, Z.Q. Li, T. Shu, et al., Analysis and improvement of an X-band magnetically insulated transmission line oscillator, J. Appl. Phys. 103 (2008) 123301.10.1063/1.2940129
    [22]
    Y.W. Fan, C.W. Yuan, H.H. Zhong, T. Shu, L. Luo, Simulation investigation of an improved MILO, IEEE Trans. Plasma Sci. 35 (2) (2007) 379–383.10.1109/tps.2007.891619
    [23]
    J. Wen, D.B. Chen, D. Wang, F. Qin, Preliminary experimental research on Ku-band MILO, IEEE Trans. Plasma Sci. 41 (2013) 2501–2505.10.1109/tps.2013.2276402
    [24]
    D. Wang, F. Qin, D.B. Chen, J. Wen, X.K. Zhang, et al., Particle simulation and experimental research on L-band double ladder cathode MIL0, High Power Laser Part. Beams 22 (4) (2010) 857–860.10.3788/hplpb20102204.0857
    [25]
    M.G. Friedman, V. Serlin, D.G. Colombant, J. Krall, Y.Y. Lau, Influence of Beam Loading on the Operation of the Relativistic Klystron Amplifier, OE/LASE '90, 14–19 Jan., Los Angeles, CA2-11, 1990.
    [26]
    M.H. Friedman, V. Serlin, M. Lampe, R.F. Hubbard, D.G. Colombant, et al., Intense electron beam modulation by inductively loaded wide gaps for relativistic klystron amplifiers, Phys. Rev. Lett. 74 (2) (1995) 322–325.10.1103/physrevlett.74.322
    [27]
    H. Huang, Z.K. Fan, F.B. Meng, J. Tan, G.Y. Luo, et al., Experimental study of S-band long-pulse relativistic klystron amplifier, High Power Laser Part. Beams 18 (6) (2006) 990–994.
    [28]
    Z.B. Liu, H. Huang, X. Jin, L.R. Lei, Experimental study on a long pulse X-band coaxial multi-beam, Acta Phys. Sin. 64 (2015) 018401.10.7498/aps.64.018401
    [29]
    M.J. Arman, Radial acceletron, a new low-impedance HPM source, IEEE Trans. Plasma Sci. 24 (3) (1996) 964–969.10.1109/27.533102
    [30]
    J.J. Barroso, K.G. Kostov, I. Yovchev, A proposed 4 GHz, 60 kW transit-time oscillator operating at 18 kV beam voltage, IEEE Trans. Plasma Sci. 26 (1998) 1520–1525.10.1109/27.736053
    [31]
    W.Y. Yang, W. Ding, A new X-band coaxial transit-time oscillator, Phys. Plasmas 9 (2) (2002) 662–665.10.1063/1.1431972
    [32]
    J. Marcum, Interchange of energy between an electron beam and an oscillating electric field, J. Appl. Phys. 17 (1) (1946) 4–11.10.1063/1.1707635
    [33]
    T.T. He, H.H. Zhong, Y.G. Liu, A new low-impedance high power microwave source, Chin. Phys. Lett. 21 (6) (2004) 1111–1113.
    [34]
    B.M. Marder, M.C. Clark, L.D. Bacon, J.M. Hoffman, R.W. Lemke, et al., The split-cavity oscillator: a high-power E-beam modulator and microwave source, IEEE Trans. Plasma Sci. 20 (3) (1992) 312–331.10.1109/27.142833
    [35]
    W.Y. Yang, W. Ding, et al., Studies of a low-impedance coaxial split-cavity oscillator, Phys. Plasmas 12 (2005) 063105.10.1063/1.1937423
    [36]
    J.W. Luginsland, M.J. Arman, Y.Y. Lau, High-power transit-time oscillator: onset of oscillation and saturation, Phys. Plasmas 4 (12) (1997) 4404–4408.10.1063/1.872603
    [37]
    J.T. He, Y.B. Cao, J.D. Zhang, J.P. Ling, Effects of intense relativistic electron beam on the microwave generation in a foilless low-impedance transit-time oscillator, IEEE Trans. Plasma Sci. 40 (6) (2012) 1622–1631.10.1109/tps.2012.2192484
    [38]
    D.B. Chen, Q.X. Liu, B. He, C. Su, Theoretical and experimental researches on the X-band five-unit transit-time tube oscillator, High Power Laser Part. Beams 17 (1) (2005) 93–98.
    [39]
    Y.B. Cao, J.T. He, J.D. Zhang, J. Zhang, Z.X. Jin, An oversized X-band transit radiation oscillator, Appl. Phys. Lett. 101 (2012) 173504.10.1063/1.4764550
    [40]
    J. Zhang, Z.X. Jin, J.H. Yang, et al., Recent advances in long-pulse HPM sources with repetive operations in S-, C-, and X-bands, IEEE Transaction Plasma Sci. 39 (6) (2011) 1438–1445.10.1109/tps.2011.2129536
    [41]
    Z. Jin, J. Zhang, J.H. Yang, H.H. Zhong, B.L. Qian, et al., A repetitive S-band long-pulse relativistic backward-wave oscillator, Rev. Sci. Instrum. 82 (2011) 084704.10.1063/1.3622520
    [42]
    X.J. Ge, H.H. Zhong, B.L. Qian, J. Zhang, L. Gao, et al., An L-band coaxial relativistic backward wave oscillator with mechanical frequency tunability, Appl. Phys. Lett. 97 (2010) 101503.10.1063/1.3488353
    [43]
    X.J. Ge, H.H. Zhong, B.L. Qian, J. Zhang, L. Liu, et al., Asymmetric-mode competition in a relativistic backward wave oscillator with a coaxial slow-wave structure, Appl. Phys. Lett. 97 (2010) 241501.10.1063/1.3526726
    [44]
    X.J. Ge, H.H. Zhong, B.L. Qian, L. Liu, Y.G. Liu, et al., Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices, Phys. Plasmas 16 (2009) 063107.10.1063/1.3158573
    [45]
    X.J. Ge, J. Zhang, H.H. Zhong, B.L. Qian, H.T. Wang, The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator, Appl. Phys. Lett. 105 (2014) 183503.10.1063/1.4897437
    [46]
    L. Gao, B.L. Qiang, X.J. Ge, A compact P-band coaxial relativistic backward wave oscillator with only three periods slow wave structure, Phys. Plasmas 18 (2011) 103111.10.1063/1.3646519
    [47]
    Y.W. Fan, H.H. Zhong, Z.Q. Li, T. Shu, J.D. Zhang, et al., Recent progress of the improved magnetically insulated transmission line oscillator. , Rev. Sci. Instrum. 79 (2008) 034703.10.1063/1.2894212
    [48]
    Y.W. Fan, H.H. Zhong, T. Shu, Z.Q. Li, Complex magnetically insulated transmission line oscillator, Phys. Plasmas 15 (2008) 083108.10.1063/1.2976168
    [49]
    Y.W. Fan, X.Y. Wang, L. He, H.H. Zhong, J.D. Zhang, A tunable magnetically insulated transmission line oscillator, Chin. Phys. B 24 (3) (2015) 035203.10.1088/1674-1056/24/3/035203
    [50]
    Z.M. Qi, J. Zhang, H.H. Zhong, Q. Zhang, D. Zhu, An improved suppression method of the transverse-electromagnetic mode leakage with two reflectors in the triaxial klystron amplifier, Phys. Plasmas 21 (2014) 073103.10.1063/1.4889901
    [51]
    J.P. Ling, J.T. He, J.D. Zhang, T. Jiang, L. Wang, Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator, Phys. Plasmas 21 (2014) 103108.10.1063/1.4900408
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(36)

    Article Metrics

    Article views (193) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return