Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 2
Mar.  2016
Turn off MathJax
Article Contents
Kawata S., Karino T., Ogoyski A. I.. Review of heavy-ion inertial fusion physics[J]. Matter and Radiation at Extremes, 2016, 1(2). doi: 10.1016/j.mre.2016.03.003
Citation: Kawata S., Karino T., Ogoyski A. I.. Review of heavy-ion inertial fusion physics[J]. Matter and Radiation at Extremes, 2016, 1(2). doi: 10.1016/j.mre.2016.03.003

Review of heavy-ion inertial fusion physics

doi: 10.1016/j.mre.2016.03.003
More Information
  • Corresponding author: *Corresponding author. Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan. E-mail address: kwt@cc.utsunomiya-u.ac.jp (S. Kawata)
  • Received Date: 2015-12-05
  • Accepted Date: 2016-01-10
  • Publish Date: 2016-03-15
  • In this review paper on heavy ion inertial fusion (HIF), the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB) transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ∼30%–40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ∼50–70 to operate a HIF fusion reactor with the standard energy output of 1 GW of electricity. The HIF reactor operation frequency would be ∼10–15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range is defined by the HIB ions stopping length, which would be ∼1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. One of the critical issues in inertial fusion would be a spherically uniform target compression, which would be degraded by a non-uniform implosion. The implosion non-uniformity would be introduced by the Rayleigh-Taylor (R-T) instability, and the large density-gradient-scale length helps to reduce the R-T growth rate. On the other hand, the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature: normally about 300 eV or so is realized in the energy absorption region, and that a direct-drive target would be appropriate in HIF. In addition, the HIB accelerators are operated repetitively and stably. The precise control of the HIB axis manipulation is also realized in the HIF accelerator, and the HIB wobbling motion may give another tool to smooth the HIB illumination non-uniformity. The key issues in HIF physics are also discussed and presented in the paper.
  • loading
  • [1]
    M.J. Clauser, Ion-beam implosion of fusion targets, Phys. Rev. Lett. 35 (1975) 848–851.10.1103/physrevlett.35.848
    [2]
    D. Böhne, I. Hofmann, G. Kessler, G.L. Kulcinski, J. Meyer-ter-Vehn, et al., HIBALL – a conceptual design study of a heavy-ion driven inertial confinement fusion power plant, Nucl. Eng. Des. 73 (2) (1982) 195–200.10.1016/0029-5493(82)90293-x
    [3]
    T. Yamaki, et al., HIBLIC-1, Conceptual Design of a Heavy Ion Fusion Reactor, Research Information Center, Institute for Plasma Physics, Nagoya University, Report IPPJ-663, 1985.
    [4]
    R.W. Moir, R.L. Bieri, X.M. Chen, T.J. Dolan, M.A. Hoffman, et al., HYLIFE-II: a Molten salt inertial fusion energy power plant design-final report, Fusion Technol. 25 (1994) 5–25;10.13182/fst94-a30234
    [5]
    J. F. Ziegler, J. P. Biersack, U. Littmark, In The Stopping and Range of Ions in matter, volume 1, (Pergamon, New York, 1985).
    [6]
    T.A. Mehlhorn, A finite material temperature model for ion energy deposition in ion-driven inertial confinement fusion targets, J. Appl. Phys. 52 (1981) 6522–6532.10.1063/1.328602
    [7]
    D.A. Callahan-Miller, M. Tabak, A distributed radiator, heavy ion target driven by gaussian beams in a multibeam illumination geometry, Nucl. Fusion 39 (1999) 883–892.10.1088/0029-5515/39/7/305
    [8]
    R.C. Arnold, E. Colton, S. Fenster, M. Foss, G. Magelssen, et al., Utilization of high energy, small emittance accelerators for ICF target experiments, Nucl. Inst. Meth. 199 (1982) 557–561.10.1016/0167-5087(82)90157-0
    [9]
    A.R. Piriz, A.R.N.A. Tahir, D.H.H. Hoffmann, M. Temporal, Generation of a hollow ion beam: calculation of the rotation frequency required to accommodate symmetry constraint, Phys. Rev. E 67 (017501) (2003) 1–3.10.1103/physreve.67.017501
    [10]
    H. Qin, R.C. Davidson, B.G. Logan, Centroid and envelope dynamics of high-intensity charged-particle beams in an external focusing lattice and oscillating wobbler, Phys. Rev. Lett. 104 (2010) 254801.10.1103/physrevlett.104.254801
    [11]
    S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, et al., Radiation effect on pellet implosion and Rayleigh-Taylor instability in light-ion beam inertial confinement fusion, Laser Part. Beams 11 (1993) 757–768.10.1017/s0263034600006492
    [12]
    S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, et al., Dynamic mitigation of instabilities, Phys. Plasmas 19 (2012) 024503.10.1063/1.3680617
    [13]
    S. Kawata, T. Karino, Robust dynamic mitigation of instabilities, Phys. Plasmas 22 (2015) 042106.10.1063/1.4917340
    [14]
    S.E. Bodner, Rayleigh-Taylor instability and laser-pellet fusion, Phys. Rev. Lett. 33 (1974) 761–764.10.1103/physrevlett.33.761
    [15]
    H. Takabe, K. Mima, L. Montierth, R.L. Morse, Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma, Phys. Fluids 28 (1985) 3676–3682.10.1063/1.865099
    [16]
    Mark H. Emery, Joseph H. Orens, John H. Gardner, Jay P. Boris, Influence of nonuniform laser intensities on ablatively accelerated targets, Phys. Rev. Lett. 48 (1982) 253–256.10.1103/physrevlett.48.253
    [17]
    S. Kawata, K. Niu, Effect of nonuniform implosion of target on fusion parameters, J. Phys. Soc. Jpn. 53 (1984) 3416–3426.10.1143/jpsj.53.3416
    [18]
    S. Kawata, R. Sonobe, T. Someya, T. Kikuchi, Final beam transport in HIF, Nucl. Inst. Meth. Phys. Res. A 544 (2005) 98–103.10.1016/j.nima.2005.01.213
    [19]
    K. Miyazawa1, A.I. Ogoyski, S. Kawata, T. Someya, T. Kikuchi, Robust heavy ion beam illumination against a direct-drive-pellet displacement in inertial confinement fusion, Phys. Plasmas 12 (2005) 122702–122711-9.10.1063/1.2140684
    [20]
    A.I. Ogoyski, T. Someya, S. Kawata, Code OK1 – simulation of multi-beam irradiation in heavy ion fusion, Comput. Phys. Commun. 157 (2004) 160–172;10.1016/s0010-4655(03)00492-2 doi: 10.1016/j.cpc.2010.03.016
    [21]
    S. kawata, Fuel target implosion in ion beam inertial confinement fusion, preprint, arXiv:1504.01831.
    [22]
    S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion: beam plasma interaction, hydrodynamics, hot dense matter, Int. Ser. Monogr. Phys. (2009).
    [23]
    S. Ichimaru, Statistical Plasma Physics, Westview Press, 2004.
    [24]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, Charles Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343–348.10.1038/nature13008
    [25]
    H.S. Park, O. A Hurricane, D. A Callahan, D. Casey, E. L Dewald, et al., High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility, Phys. Rev. Lett. 112 (2014) 055001.10.1103/physrevlett.112.055001
    [26]
    R.W. Petzoldt, IFE target injection and tracking experiment, Fusion Tech. 34 (1998) 831–839.10.13182/fst98-a11963716
    [27]
    R.O. Bangerter, The U.S. heavy-ion fusion program, Nucl. Instr. Meth. A 415 (1998) 3–10.10.1016/s0168-9002(98)00369-6
    [28]
    J.J. Barnard, Richard M. More, M. Terry, A. Friedman, E. Henestroza, et al., NDCX-II target experiments and simulations, Nucl. Instrum. Methods Phys. Res. A 733 (2014) 45–50.10.1016/j.nima.2013.05.096
    [29]
    W.F. Henning, The future GSI facility, Nucl. Instr. Meth. B 214 (2004) 211–215;10.1016/s0168-583x(03)01761-0 doi: 10.1016/j.nima.2009.03.087
    [30]
    J.C. Yang, J.W. Xia, G.Q. Xiao, H.S. Xu, H.W. Zhao, et al., High intensity heavy ion accelerator facility (HIAF) in China, Nucl. Instr. Meth. B 317 (15) (2013) 263–265.10.1016/j.nimb.2013.08.046
    [31]
    Masaro Okamura, A.I. Pikin, Vladimir Zajic, T. Kanesue, J. Tamura, Laser ion source for low-charge heavy ion beams, Nucl. Instr. Meth. A 606 (2009) 94–96.10.1016/j.nima.2009.03.232
    [32]
    K. Takayama, R.J. Briggs, et al., Induction Accelerators, Springer-Verlag, Berlin Heidelberg, 2011.
    [33]
    M. Matsukawa, K. Tobita, H. Chikaraishi, A. Sagara, T. Norimatsu, Electric power flow in a nucler fusion power plant, J. Plasma Fusion Res. 80 (2004) 559–562 (in Japanese).10.1585/jspf.80.559
    [34]
    R.B. Miller, Intense Charged Particle Beams, Plenum Press, New York, 1985.
    [35]
    S. Humphries Jr., Charged Particle Beams, John Wiley and Sons, Inc, 1990.
    [36]
    C. Deutsch, S. Kawata, T. Nakamura, Accelerator system and final beam transport in heavy ion inertial confinement fusion, J. Plasma Fusion Res. 77 (2001) 33–39.
    [37]
    D.A. Callahan, Interaction between neighboring beams in heavy ion fusion reactor chamber, Appl. Phys. Lett. 67 (1995) L3254–L3256.10.1063/1.114889
    [38]
    D.A. Callahan, Chamber propagation physics for heavy ion fusion, Fusion Eng. Des. 32–33 (1996) 441–452.10.1016/s0920-3796(96)00500-5
    [39]
    Anna Tauschwitz, S.S. Yu, S. Eylon, R.O. Bangerter, Wim Leemans, et al., Plasma lens focusing and plasma channel transport for heavy ion fusion, Fusion Eng. Des. 32–33 (1996) 493–502.10.1016/s0920-3796(96)00505-4
    [40]
    W.M. Sharp, D.A. Callahan, M. Tabak, S.S. Yu, P.F. Peterson, Chamber transport of “foot” pulses for heavy-ion fusion, Phys. Plasmas 10 (2003) 2457–2467.10.1063/1.1570826
    [41]
    P.K. Roy, S.S. Yu, S. Eylon, E. Henestroza, Andre Anders, et al., Results on intense beam focusing and neutralization from the neutralized beam experiment, Phys. Plasmas 11 (2004) 2890–2898;10.1063/1.1652712 doi: 10.1063/1.1652712
    [42]
    T. Someya, S. Kawata, T. Nakamura, A.I. Ogoyski, K. Shimizu, et al., Beam final transport and direct-drive pellet implosion in heavy-ion fusion, Fusion Sci. Tech. 43 (2003) 282–289.10.13182/fst03-a268
    [43]
    D.R. Welch, D.V. Rose, B.V. Oliver, R.E. Clark, Simulation techniques for heavy ion fusion chamber transport, Nucl. Instr. Meth. A 464 (2001) 134–139.10.1016/s0168-9002(01)00024-9
    [44]
    D.V. Rose, D.R. Welch, B.V. Oliver, R.E. Clark, W.M. Sharp, et al., Ballistic-neutralized chamber transport of intense heavy ion beams, Nucl. Instr. Meth. A 464 (2001) 299–304.10.1016/s0168-9002(01)00187-5
    [45]
    A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regimeGerard Rev. Mod. Phys. 78 (2006) 309–372.10.1103/revmodphys.78.309
    [46]
    T. Nakamura, S. Kawata, Origin of protons accelerated by an intense laser and the dependence of their energy on the plasma density, Phys. Rev. E 67 (2003) 026403.10.1103/physreve.67.026403
    [47]
    S. Kawata, T. Izumiyama, T. Nagashima, M. Takano, D. Barada, et al., Laser ion acceleration toward future ion beam cancer therapy – numerical simulation study, Laser Ther. 22 (2) (2013) 103–114.10.5978/islsm.13-or-09
    [48]
    T. Okada, K. Niu, Filamentation and two-stream instabilities of light ion beams in fusion target chambers, J. Phys. Soc. Jpn. 50 (1981) 3845–3846.10.1143/jpsj.50.3845
    [49]
    R.R. Peterson, C.L. Olson, Pre-formed plasma channels for ion beam fusion, in: Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, AIP Conference Proceedings, 406, 1997, pp. 259–266.
    [50]
    H. Qin, C.R. Davidson, W.W. Lee, 3D nonlinear perturbative particle simulations of two-stream collective processes in intense particle beams, Phys. Lett. A 272 (2000) 389–394.10.1016/s0375-9601(00)00440-0
    [51]
    H. Qin, C.R. Davidson, W.W. Lee, R. Kolesnikov, 3D multispecies nonlinear perturbative particle simulations of collective processes in intense particle beams for heavy ion fusion, Nucl. Instr. Methods Phys. Res. A 464 (2001) 477–483.10.1016/s0168-9002(01)00713-6
    [52]
    T. Okada, K. Niu, Electromagnetic instability and stopping power of plasma for relativistic electron beams, J. Plasma Phys. 23 (1980) 423–432.10.1017/s0022377800022431
    [53]
    T. Okada, K. Niu, Effect of collision on the relativistic electromagnetic instability, J. Plasma Phys. 24 (1980) 483–488.10.1017/s0022377800010424
    [54]
    R.F. Hubbard, D.A. Tidman, Filamentation instability of ion beams focused in pellet-fusion reactors, Phys. Rev. Lett. 41 (1978) 866–869.10.1103/physrevlett.41.866
    [55]
    P.F. Ottinger, D. Mosher, S.A. Goldstein, Microstability of a focused ion beam propagating through a z-pinch plasma, Phys. Fluids 22 (1979) 332–337.10.1063/1.862584
    [56]
    Shigeo Kawata, Shinichi Nishiyama, Masataka Mori, Kenta Naito, Shigeru Kato, et al., Intense-electron-beam transportation through an insulator beam guide, Jpn. J. Appl. Phys. 34 (1995) L520–L522.10.1143/jjap.34.l520
    [57]
    Susumu Hanamori, Shigeo Kawata, Shigeru Kato, Takashi Kikuchi, Akira Fujita, et al., Intense-proton-beam transport through an insulator beam guide, intense-proton- beam transport through an insulator beam guide, Jpn. J. Appl. Phys. 37 (1998) 471–474.10.1143/jjap.37.l471
    [58]
    S. Kawata, T. Someya, T. Nakamura, S. Miyazaki, K. Shimizu, et al., Heavy ion beam final transport through an insulator guide in heavy ion fusion, Laser Part Beams 21 (2003) 27–32.10.1017/s0263034602211064
    [59]
    A.B. Langdon, B.F. Lasinski, Electromagnetic and relativistic plasma simulation models, Methods Comput. Phys. 6 (1976) 327–366.10.1016/b978-0-12-460816-0.50014-2
    [60]
    J.M. Dawson, Particle simulation of plasmas, Rev. Mod. Phys. 55 (1983) 403–448.10.1103/revmodphys.55.403
    [61]
    C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, 1985.
    [62]
    R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, CRC Press, 1988.
    [63]
    S. Kato, K. Naito, K. Nawashiro, Y. Kawakita, M. Hakoda, et al., Propagation control of an intense pulsed electron beam and its application to surface treatment, in: Proc. 9th Int. Symp. On High Voltage Eng., Graz, Austria, 1995, pp. 7887–7891.
    [64]
    K. Sugiura, K. Niu, Nuclear Fusion, Cambridge University Press, 2009.
    [65]
    J.D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933–4024.10.1063/1.871025
    [66]
    S. Kawata, Y. Iizuka, Y. Kodera, A.I. Ogoyski, T. Kikuchi, Robust fuel target in heavy ion inertial fusion, Nucl. Instr. Meth. A 606 (2009) 152–156.10.1016/j.nima.2009.03.188
    [67]
    T. Someya, A.I. Ogoyski, S. Kawata, T. Sasaki, Heavy-ion beam illumination on a direct-driven pellet in heavy-ion inertial fusion, Phys. Rev. ST Accel. Beams 7 (044701) (2004) 1–13.10.1103/physrevstab.7.044701
    [68]
    S. Skupsky, K. Lee, Uniformity of energy deposition for laser driven fusion, J. Appl. Phys. 54 (1983) 3662–3671.10.1063/1.332599
    [69]
    L.D. Landau, E.M. Lifshitz, Fluid Mechanic, Oxford Pergamon Press, 1959.
    [70]
    H. Ertel, Ein neuer hydrodynamischer Wirbelsatz, Meteorol. Zeitschr. Braunschw. 59 (1942) 277–281.
    [71]
    G.H. Wolf, Dynamic stabilization of the interchange instability of a liquid-gas interface, Phys. Rev. Lett. 24 (1970) 444–446.10.1103/physrevlett.24.444
    [72]
    F. Troyon, R. Gruber, Theory of the dynamic stabilization of the Rayleigh-Taylor instability, Phys. Fluids 14 (1971) 2069–2073.10.1063/1.1693294
    [73]
    J.P. Boris, Dynamic stabilization of the imploding shell Rayleigh-Taylor instability, Comments Plasma Phys. Cont. Fusion 3 (1977) 1–13.
    [74]
    R. Betti, R.L. McCrory, C.P. Verdon, Stability analysis of unsteady ablation fronts, Phys. Rev. Lett. 71 (1993) 3131–3134.10.1103/physrevlett.71.3131
    [75]
    A.R. Piriz, G.R. Prieto, I.M. Diaz, J.J.L. Cela, Dynamic stabilization of Rayleigh-Taylor instability in Newtonian fluids, Phys. Rev. E 82 (026317) (2010) 1–11.10.1103/physreve.82.026317
    [76]
    A.R. Piriz, S.A. Piriz, N.A. Tahir, Dynamic stabilization of classical Rayleigh-Taylor instability, Phys. Plasmas 18 (092705) (2011) 1–9.10.1063/1.3633487
    [77]
    J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature 239 (1972) 139–142.10.1038/239139a0
    [78]
    E.S. Weibel, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Phys. Rev. Lett. 2 (1959) 83–84.10.1103/physrevlett.2.83
    [79]
    S. Kawata, T. Kurosaki, K. Noguchi, T. Suzuki, S. Koseki, et al., Wobblers and Rayleigh–Taylor instability mitigation in HIF target implosion, Nucl. Instr. Meth. A 733 (2013) 211–215.10.1016/j.nima.2013.05.066
    [80]
    S. Kawata, H. Nakashima, Tritium content of a DT pellet in inertial confinement fusion, Laser Part. Beams 10 (1992) 479–484.10.1017/s0263034600006728
    [81]
    D.T. Goodin, C.R. Gibson, R.W. Petzoldt, N.P. Siegel, L. Thompson, et al., Developing the basis for target injection and tracking in inertial fusion energy power plants, Fusion Eng. Des. 60 (2002) 27–36.10.1016/s0920-3796(01)00593-2
    [82]
    R.W. Petzoldt, M. Cherry, N.B. Alexander, D.T. Goodin, G.E. Besenbruch, et al., Design of an inertial fusion energy target tracking and position prediction system, Fusion Tech. 39 (2001) 678–683.
    [83]
    R.W. Petzoldt, D.T. Goodin, A. Nikroo, E. Stephens, N. Siegel, et al., Direct drive target survival during injection in an inertial fusion energy power plant, Nucl. Fusion 42 (2002) 1351–1356.10.1088/0029-5515/42/12/301
    [84]
    M. Murakami, J. Meyer-ter-Vehn, Radiation symmetrization in indirectly driven ICF targets, Nucl. Fusion 31 (1991) 1333–1342.10.1088/0029-5515/31/7/008
    [85]
    J. Sasaki, T. Nakamura, Y. Uchida, T. Someya, K. Shimizu, et al., Beam non-uniformity smoothing using density valley formed by heavy ion beam deposition in inertial confinement fusion fuel pellet, Jpn. J. Appl. Phys. 40 (2001) 968–971.10.1143/jjap.40.968
    [86]
    M. Murakami, Irradiation system based on dodecahedron for inertial confinement fusion, Appl. Phys. Lett. 27 (1995) 1587–1589.10.1063/1.113860
    [87]
    T. Peter, J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power, Phys. Rev. A 43 (1991) 1998–2014.10.1103/physreva.43.1998
    [88]
    T. Peter, J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers, Phys. Rev. A 43 (1991) 2015–2030.10.1103/physreva.43.2015
    [89]
    J.P. Bondorf, S.I.A. Garpman, J. Zimanyi, A simple analytic hydrodynamic model for expanding fireballs, Nucl. Phys. A 296 (1978) 320–332.10.1016/0375-9474(78)90076-3
    [90]
    Ya.B. Zel'dovich, Yu.P. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Dover Pub. Inc., New York, 2002.
    [91]
    HIF VNL, http://hif.lbl.gov/.
    [92]
    FAIR, http://www.fair-center.eu/public/what-is-fair.html
    [93]
    S. Kawata, K. Horioka, M. Murakami, Y. Oguri, J. Hasegawab, et al., Studies on heavy ion fusion and high energy density physics in Japan, Nuc. Instr. Methods Phys. Res. A 577 (2007) 21–29.10.1016/j.nima.2007.02.007
    [94]
    K. Niu, S. Kawata, Proposal of power plant by light ion beam fusion, Fusion Technol. 11 (1987) 365–373.10.13182/fst87-a25014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(36)

    Article Metrics

    Article views (161) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return