Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 2
Mar.  2016
Turn off MathJax
Article Contents
Liu Haifeng, Song Haifeng, Zhang Qili, Zhang Gongmu, Zhao Yanhong. Validation for equation of state in wide regime: Copper as prototype[J]. Matter and Radiation at Extremes, 2016, 1(2). doi: 10.1016/j.mre.2016.03.002
Citation: Liu Haifeng, Song Haifeng, Zhang Qili, Zhang Gongmu, Zhao Yanhong. Validation for equation of state in wide regime: Copper as prototype[J]. Matter and Radiation at Extremes, 2016, 1(2). doi: 10.1016/j.mre.2016.03.002

Validation for equation of state in wide regime: Copper as prototype

doi: 10.1016/j.mre.2016.03.002
More Information
  • Corresponding author: *Corresponding author. E-mail address: liu_haifeng@iapcm.ac.cn (H. Liu).
  • Received Date: 2015-09-14
  • Accepted Date: 2016-01-27
  • Publish Date: 2016-03-15
  • In this paper we introduce the wide regime equation of state (WEOS) developed in Institute of Applied Physics and Computational Mathematics (IAPCM). A semi-empirical model of the WEOS is given by a thermodynamically complete potential of the Helmholtz free energy which combines several theoretical models and has some adjustable parameters calibrated via some experimental and theoretical data. The validation methods of the equation of state in wide regime are presented using copper as a prototype. The results of the WEOS are well consistent with the available theoretical and experimental data, including ab initio cold curve under compression, isotherm, Hugoniot, off-Hugoniot and sound velocity data. It enhances our confidence in the accuracy of the WEOS, which is very important for the validation and verification of equation of state in high temperature and pressure technology.
  • loading
  • [1]
    V. Bushman, G.I. Kanel, A.L. Ni, V.E. Fortov, Intense Dynamic Loading of Condensed Matter, Taylor&Francis, London, 1993.
    [2]
    M.D. Knudson, M.P. Desjarlais, Adiabatic release measurements in aluminum between 400 and 1200 GPa: characterization of aluminum as a shock standard in the multimegabar regime, Phys. Rev. B 91 (2015) 224105.10.1103/physrevb.91.224105
    [3]
    H.K. Mao, R.J. Hemley, Ultrahigh pressure transitions in solid hydrogen, Rev. Mod. Phys. 66 (1994) 671.10.1103/revmodphys.66.671
    [4]
    T. Kimura, N. Ozaki, T. Okuchi, T. Mashimo, K. Miyanishi, et al., Static compression experiments for advanced coupling techniques of laser-driven dynamic compression and precompression target, J. Phys. Conf. Ser. 215 (2010) 012152.10.1088/1742-6596/215/1/012152
    [5]
    R.P. Feymnan, N. Metropolis, E. Teller, Equations of state of elements based on the generalized Fermi-Thomas theory, Phys. Rev. 75 (10) (1949) 1561–1573.10.1103/physrev.75.1561
    [6]
    S.L. McCarthy, The Kirzhnits Corrections to the Thomas-Fermi Equation of State, Lawrence Livermore Laboratory, 1965. Report UCRL-14364.
    [7]
    D.A. Kirzhnits, Y.E. Lozovik, G.V. Shpatakovskaya, Statistical model of matter, Soviet Physics Uspekhi 18 (1975) 649.10.1070/pu1975v018n09abeh005199
    [8]
    A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State, vol. 37, Springer Science & Business Media, 2006.
    [9]
    W. Ebeling, A. Forster, V.E. Fortov, V.K. Gryaznov, A.Y. Polishchuk, Thermophysical Properties of Hot Dense Plasmas, B. G. Teubner, Verlagsgesellschaft, Stuttgart Leipzig, 1991.
    [10]
    D.C. Wallace, Statistical Physics of Crystals and Liquids, World Scientific, Singapore, 2003.
    [11]
    W. Lorenzen, B. Holst, R. Redmer, Demixing of hydrogen and helium at megabar pressures, Phys. Rev. Lett. 102 (2009) 115701.10.1103/physrevlett.102.115701
    [12]
    S.A. Bonev, B. Militzer, G. Galli, Ab initio simulations of dense liquid deuterium: comparison with gas-gun shock-wave experiments, Phys. Rev. B 69 (2004) 014101.10.1103/physrevb.69.014101
    [13]
    L.A. Collins, S.R. Bickham, J.D. Kress, S. Mazevet, T.J. Lenosky, et al., Dynamical and optical properties of warm dense hydrogen, Phys. Rev. B 63 (2001) 184110.10.1103/physrevb.63.184110
    [14]
    M.P. Desjarlais, Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing, Phys. Rev. B 68 (2003) 064204.10.1103/physrevb.68.064204
    [15]
    K.T. Delaney, C. Pierleoni, D.M. Ceperley, Quantum Monte Carlo simulation of the high-pressure molecular-atomic crossover in fluid hydrogen, Phys. Rev. Lett. 97 (2006) 235702.10.1103/physrevlett.97.235702
    [16]
    B. Militzer, D.M. Ceperley, J.D. Kress, J.D. Johnson, L.A. Collins, et al., Calculation of a deuterium double shock Hugoniot from Ab initio simulations, Phys. Rev. Lett. 87 (2001) 275502.10.1103/physrevlett.87.275502
    [17]
    F. Lin, M.A. Morales, K.T. Delaney, C. Pierleoni, R.M. Martin, et al., Electrical conductivity of high-pressure liquid hydrogen by quantum Monte Carlo methods, Phys. Rev. Lett. 103 (2009) 256401.10.1103/physrevlett.103.256401
    [18]
    S.P. Lyon, J.D. Johnson, SESAME: The Los Alamos National Laboratory Equation of State Database, Los Alamos National Laboratory, Los Alamos, NM, 1992. Technical report LA-UR-92-3407.
    [19]
    R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter, Phys. Fluids 31 (10) (Oct. 1988) 3059–3078.10.1063/1.866963
    [20]
    Xishen Xu, Wanxiang Zhang, Theoretical Introduction to Equation of State, Scientific Press, Beijing, 1986 (in Chinese).
    [21]
    Haifeng Liu, Haifeng Song, Gongmu Zhang, The single phase and two-phase equations of state for aluminum, AIP Conf. Proc. 1426 (2012) 832–835.10.1063/1.3686407
    [22]
    N.N. Kalitkin, L.V. Kuz'mina, Russ. J., Plasma Phys. 2 (5) (1976) 478.
    [23]
    S.B. Kormer, A.I. Funtikov, V.D. Urlin, A.N. Kolesnikova, Dynamical compression of porous metals and the equation of state with variable specific heat at high temperatures, Zh. Eksp. Teor. Fiz. 42 (1962) 686–701 (in Russian)
    [24]
    G.I. Kerley, Rational Function Method of Interpolation, LA-6903-MS, 1977.
    [25]
    S.P. Marsh (Ed.), LASL Shock Hugoniot Data, Univ. California Press, Berkeley, 1980.
    [26]
    A.C. Mitchell, W.J. Nellis, Shock compression of aluminum, copper and tantalum, J. Appl. Phys. 52 (1981) 3363–3374.10.1063/1.329160
    [27]
    B.L. Glushak, A.P. Zharkov, M.V. Zhernokletov, V. Ya. Ternovoi, A.S. Filimonov, et al., Experimental investigation of the thermodynamics of dense plasmas formed from metals at high energy concentrations, Sov. Phys. JETP 69 (4) (1989) 739–749.
    [28]
    Xiang Wang, Summary of Technique in measurement of Equation of State, Report in Institute of Fluid Physics, 2002 (unpublished).
    [29]
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864.10.1103/physrev.136.b864
    [30]
    A. Khein, D.J. Umrigar, All-electron study of gradient corrections to the local-density functional in metallic systems, Phys. Rev. B 51 (1995) 4105.10.1103/physrevb.51.4105
    [31]
    P.M. Bell, Ji-an Xu, H.K. Mao, Static compression of gold and copper and calibration of the ruby pressure scale to pressures to 1.8 megabars (static. RNO), Shock Waves Condens. Matter (1986) 125–130 Springer US.
    [32]
    C.W. Greeff, J.C. Boettger, M.J. Graf, J.D. Johnson, Theoretical investigation of the Cu EOS standard, J. Phys. Chem. Sol. 67 (2006) 2033–2040.10.1016/j.jpcs.2006.05.055
    [33]
    G. Kress, J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48 (1993) 13115.10.1103/PhysRevB.48.13115 doi: 10.1103/PhysRevB.54.11169
    [34]
    P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (399) (1990).10.1016/0010-4655(90)90187-6
    [35]
    K. Schwarz, P. Blaha, G. Madsen, Electronic Structure calculations of solids using Wien2k package for material sciences, Comput. Phys. Commun. 147 (2002) 71.10.1016/s0010-4655(02)00206-0
    [36]
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.10.1103/physrevlett.77.3865
    [37]
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)10.1103/physrevlett.77.3865], doi: 10.1103/physrevlett.78.1396
    [38]
    Y. Wang, D. Chen, X. Zhang, Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa, Phys. Rev. Lett. 84 (2000) 3220.10.1103/physrevlett.84.3220
    [39]
    N.N. Kalitkin, L.V. Kuzmina, in: V.E. Fortov, L.V. Al'tshuler, R.F. Trunin, A.I. Funtikov (Eds.), Wide-range Characteristic Thermodynamic Curves, in High Pressure Shock Compression of Solids VII., Springer, 2004.
    [40]
    L.V. Al'tshuler, S.E. Brusnikin, High. Temp. 27 (1) (1989) 39–47.
    [41]
    N.N. Kalitkin, I.A. Govorukhina, Sov. Phys. Solid State 7 (2) (1965) 287–292.
    [42]
    E.A. Kuzmenkov, Izv. Sib. Div. Russ. Acad. Sci. 6 (1989) 106–112.
    [43]
    P.W. Bridgman, Proc. Am. Acad. Sci. 76 (6) (1949) 189.
    [44]
    H.K. Mao, P.M. Bell, J.W. Shaner, D.J. Steinberg, Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 49 (6) (1978) 3276–3283.10.1063/1.325277
    [45]
    A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94GPa, Phys. Rev. B 70 (2004) 094112.10.1103/physrevb.70.094112
    [46]
    L.V. Al'tshuler, S.B. Kormer, A.A. Bakanova, R.F. Trunin, Equations of state for aluminum, copper and lead in the high pressure region, Sov. Phys. JETP 11 (1960) 573–579.
    [47]
    W.J. Nellis, J.A. Moriarty, A.C. Mitchell, Metals physics at ultrahigh pressure: aluminum, copper, and lead as prototypes, Phys. Rev. Lett. 60 (1988) 1414.10.1103/physrevlett.60.1414
    [48]
    L.V. Al'tshuler, S.E. Brusnikin, E.A. Kuzmenkov, J. Appl. Mech. Tech. Phys. 28 (1) (1987) 129–141.10.1007/bf00918785
    [49]
    Song Haifeng, Haifeng Liu, Modified mean-field potential approach to the thermodynamic properties of a low-symmetry crystal: beryllium as a prototype, Phys. Rev. B 75 (2007) 245126.10.1103/physrevb.75.245126
    [50]
    J.C. Boettger, Int. J. Quantum Chem. Sym 27 (1993) 147–154.10.1002/qua.560480817
    [51]
    J.-P. Davis, J.L. Brown, M.D. Knudson, R.W. Lemke, Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum, J. Appl. Phys. 116 (2014) 204903.10.1063/1.4902863
    [52]
    J.M. Walsh, M.H. Rice, R.G. Mcqueen, F.L. Yarger, Shock-wave compressions of twenty-seven metals equations of state of metals, Phys. Rev. 108 (1957) 196–216.10.1103/physrev.108.196
    [53]
    R.G. McQueen, S.P. Marsh, Equation of state for nineteen metallic elements, J. Appl. Phys. 31 (1960) 1253–1269.10.1063/1.1735815
    [54]
    W.J. Mitchell, J.A. Nellis, R.A. Moriarty, N.C. Heinle, R. E. Tipton Holmes, G.W. Repp, Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar), J. Appl. Phys. 69 (1991) 2981–2986.10.1063/1.348611
    [55]
    E. Ragan, Shock-wave experiment at threefold compression, Phys. Rev. Ser. A 29 (1984) 1391–1402.10.1103/physreva.29.1391
    [56]
    L.V. Al'tshuler, K.K. Krupnikov, M.I. Brazhnik, Dynamical compressibility of metals under pressure from 400000 to 4 million atmospheres, Sov. Phys. JETP 7 (1958) 614–618.
    [57]
    L.V. Al'tshuler, A.A. Bakanova, R.F. Trunin, Shock adiabats and zero isotherms of seven metals at high pressures, Sov. Phys. JETP 15 (1962) 65–74.
    [58]
    L.V. Al'tshuler, B.S. Chekin, Metrology of high pulsed pressures, in: Proceed. of 1 All-Union Pulsed Pressures Simposium, vol. 1, VNIIFTRI, Moscow, 1974, pp. 5–22 (in Russian).
    [59]
    L.V. Al'tshuler, N.N. Kalitkin, L.V. Kuz'mina, B.S. Chekin, Shock adiabats for ultrahigh pressures, Sov. Phys. JETP 45 (1) (1977) 167–171.
    [60]
    L.V. Al'tshuler, A.A. Bakanova, I.P. Dudoladov, E.A. Dynin, R.F. Trunin, et al., Shock adiabats for metals. New data, statistical analysis and general regularities, J. Appl. Mech. Tech. Phys. 22 (1981) 145.10.1007/bf00907938
    [61]
    R.F. Trunin, M.A. Podurets, B.N. Moiseev, G.V. Simakov, L.V. Popov, Relative compressibility of copper, cadmium and lead at high pressures, Sov. Phys. JETP 29 (4) (1969) 630–631.
    [62]
    R.F. Trunin, M.A. Podurets, G.V. Simakov, L.V. Popov, B.N. Moiseev, Experimental verification of the Thomas-Fermi model for metals under high pressure, Sov. Phys. JETP 35 (3) (1972) 550–552.
    [63]
    R.F. Trunin, L.A. Il'kaeva, M.A. Podurets, L.V. Popov, B.V. Pechenkin, et al., Measurement of shock compressibility of iron, copper, lead and titanium at pressures of 20 TPa, Teplofiz. Vys. Temp. 32 (5) (1994) 692–695 (in Russian).
    [64]
    R.F. Trunin, Shock compressibility of condensed matters in strong shock waves caused by underground nuclear explosions, Usp. Fiz. Nauk. 164 (11) (1994) 1215–1237 (in Russian).10.3367/ufnr.0164.199411d.1215
    [65]
    W.H. Isbell, F.H. Shipman, A.H. Jones, Hugoniot Equation of State Measurements for Eleven Materials to Five Megabars, General Motors Corp., Mat. Sci. Lab, 1968. Report MSL-68–13.
    [66]
    S.B. Kormer, A.I. Funtikov, V.D. Ulrin, A.N. Kolesnikova, Dynamical compression of porous metals and the equation of state with variable specific heat at high temperatures, Sov. Phys. JETP 15 (1962) 477–478.
    [67]
    R.F. Trunin, A.B. Medvedev, A.I. Funtikov, M.A. Podurets, G.V. Simakov, et al., Shock compression of porous iron, copper, and tungsten and their equation of state in terapascal pressure range, Sov. Phys. JETP 68 (2) (1989) 356–361.
    [68]
    M.V. Zhernokletov, V.N. Zubarev, Yu. N. Sutulov, Adiabats of porous samples and expansion isentropes of copper, Zh. Prikl. Mekh. Tekhn. Fiz. 1 (1984) 119–123 (in Russian).
    [69]
    R.F. Trunin, G.V. Simakov, Yu. N. Sutulov, A.B. Medvedev, B.D. Rogozkin, et al., Compression of porous metals in shock waves, Sov. Phys. JETP 69 (3) (1989) 580–588.
    [70]
    V.K. Gryaznov, V.E. Fortov, M.V. Zhernokletov, G.V. Simakov, R.F. Trunin, et al., Shock compression and thermodynamics of highly nonideal metallic plasma, Sov. Phys. JETP 87 (4) (1998) 678–690.10.1134/1.558710
    [71]
    Sizu Fu, Xiuguang Huang, Minxun Ma, Hua Shu, Jiang Wu, et al., Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ∼2.24 TPa with high precision, J. Appl. Phys. 101 (2007) 043517.10.1063/1.2538097
    [72]
    Xiuguang Huang, Sizu Fu, The Experiment of Laser Equation of State, Report in Shanghai Institute of Laser Plasma (unpublished), 2014.
    [73]
    W.J. Nellis, A.C. Mitchell, D.A. Young, Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80-440 GPa (0.8-4.4 Mbar), J. Appl. Phys. 93 (1) (2003) 304–310.10.1063/1.1529071
    [74]
    Bakanova, I.P. Dudoladov, M.V. Zhernokletov, V.N. Zubarev, G.V. Simakov, On evaporation of shock-compressed metals under expansion, J. Appl. Mech. Tech. Phys. 24 (1983) 204.
    [75]
    Yu. L. Alekseev, B.P. Ratnikov, A.P. Rybakov, Shock adiabats of porous metals, Zh. Prikl. Mekh. Tekhn. Fiz. 2 (1971) 101–106 (in Russian).
    [76]
    D.J. Steinberg, S.G. Cochran, M.W. Guinan, A constitutive model for metals applicable at high strain rate, J. Appl. Phys. 51 (3) (1980) 1498–1503.10.1063/1.327799
    [77]
    D. Hayes, R. Hixson, R. McQueen, High pressure elastic properties, solid-liquid phase boundary and liquid equation of state from release wave measurement in shock-loaded copper, in: M.D. Furnish, L.C. Chhabildas, R.S. Hixson (Eds.), Shock Compression of Condensed Matter-1999, 2000, pp. 483–488. Melville, New York.
    [78]
    Yuyin Yu, Measurement of Sound Velocity of Copper in Inverse Impact, Report in Institute of Fluid Physics, 2006 (unpublished).
    [79]
    Pengjian Xiang, Comparative Study of Johnson-cook Constitutive Model and Steinberg Constitutive Model (Ph. D thesis), Graduate of China Academy Engineer Physics, Mianyang, 2006.
    [80]
    Ke Jin, Measurement of Sound Velocity of Copper under shock loading, Report in Institute of Fluid Physics, 2012 (unpublished).
    [81]
    Ping Song, Lingcang Cai, Xianming Zhou, Hua Tan, Experimental investigation of the release isentropes of OFHC copper, Chin. J. High Press. Phys. 19 (2) (2005) 174.
    [82]
    L.V. Al'tshuler, S.B. Kormer, M.I. Brazhnik, L.A. Vladimirov, M.P. Speranskaya, et al., The isentropic compressibility of aluminum, copper, lead at high pressures, Sov. Phys. JETP 11 (4) (1960) 766–775.
    [83]
    K.B. Broberg, Shock Wave in Elastic and Plastic Media, 1965.
    [84]
    C.E. Morris, J.N. Fritz, B. E. Holian, LA-Ur -81.
    [85]
    Jinbiao Hu, Qian Jingfu, Juxin Cheng, Sound velocities at high pressures and shock-melting of copper, Chin. J. High Press. Phys. 3 (3) (1989) 187.
    [86]
    J.H. Nguyen, M.C. Akin, R. Chau, D.E. Fratanduono, W.P. Ambrose, et al., Molybdenum sound velocity and shear modulus softening under shock compression, Phys. Rev. B 89 (2014) 174109.10.1103/physrevb.89.174109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (165) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return