Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Lan Ke, Liu Jie, Li Zhichao, Xie Xufei, Huo Wenyi, Chen Yaohua, Ren Guoli, Zheng Chunyang, Yang Dong, Li Sanwei, Yang Zhiwen, Guo Liang, Li Shu, Zhang Mingyu, Han Xiaoying, Zhai Chuanlei, Hou Lifei, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Wang Feng, Yuan Guanghui, Zhang Haijun, Jiang Bobin, Huang Lizhen, Zhang Wei, Du Kai, Zhao Runchang, Li Ping, Wang Wei, Su Jingqin, Deng Xuewei, Hu Dongxia, Zhou Wei, Jia Huaiting, Ding Yongkun, Zheng Wanguo, He Xiantu. Progress in octahedral spherical hohlraum study[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.01.003
Citation: Lan Ke, Liu Jie, Li Zhichao, Xie Xufei, Huo Wenyi, Chen Yaohua, Ren Guoli, Zheng Chunyang, Yang Dong, Li Sanwei, Yang Zhiwen, Guo Liang, Li Shu, Zhang Mingyu, Han Xiaoying, Zhai Chuanlei, Hou Lifei, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Wang Feng, Yuan Guanghui, Zhang Haijun, Jiang Bobin, Huang Lizhen, Zhang Wei, Du Kai, Zhao Runchang, Li Ping, Wang Wei, Su Jingqin, Deng Xuewei, Hu Dongxia, Zhou Wei, Jia Huaiting, Ding Yongkun, Zheng Wanguo, He Xiantu. Progress in octahedral spherical hohlraum study[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.01.003

Progress in octahedral spherical hohlraum study

doi: 10.1016/j.mre.2016.01.003
More Information
  • Corresponding author: *Corresponding author. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. Tel.: +86 10 59872080 (office); fax: +86 10 59872300. E-mail address: lan_ke@iapcm.ac.cn (K. Lan).
  • Received Date: 2015-11-22
  • Accepted Date: 2015-12-25
  • Publish Date: 2016-01-15
  • In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs) of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG) laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
  • loading
  • [1]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford Science, Oxford, 2004.
    [2]
    J.D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.10.1063/1.871025
    [3]
    X. Li, K. Lan, X. Meng, X. He, D. Lai, T. Feng, Study on Au + U + Au sandwich Hohlraum wall for ignition targets, Laser Part. Beams 28 (2010) 75.10.1017/s0263034609990590
    [4]
    S.W. Haan, J.D. Lindl, D.A. Callanhan, D.S. Clark, J.D. Salmonson, B.A. Hammel, L.J. Atherton, R.C. Cook, M.J. Edwards, S. Glenzer, A.V. Hamza, S.P. Hatchett, M.C. Herrmann, D.E. Hinkel, D.D. Ho, H. Huang, O.S. Jones, J. Kline, G. Kyrala, O.L. Landen, B.J. MacGowan, M.M. Marinak, D.D. Meyerhofer, J.L. Milovich, K.A. Moreno, E.I. Moses, D.H. Munro, A. Nikroo, R.E. Olson, K. Peterson, S.M. Pollaine, J.E. Ralph, H.F. Robey, B.K. Spears, P.T. Springer, L.J. Suter, C.A. Thomas, R.P. Town, R. Vesey, S.V. Weber, H.L. Wilkens, D.C. Wilson, Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility, Phys. Plasmas 18 (2011) 051001.10.1063/1.3592169
    [5]
    D.A. Callahan, N.B. Meezan, S.H. Glenzer, A.J. MacKinnon, L.R. Benedetti, D.K. Bradley, J.R. Celeste, P.M. Celliers, S.N. Dixit, T. Doppner, E.G. Dzentitis, S. Glenn, S.W. Haan, C.A. Haynam, D.G. Hicks, D.E. Hinkel, O.S. Jones, O.L. Landen, R.A. London, A.G. MacPhee, P.A. Michel, J.D. Moody, J.E. Ralph, H.F. Robey, M.D. Rosen, M.B. Schneider, D.J. Strozzi, L.J. Suter, R.P. Town, K.L.J. Atherton, G.A. Kyrala, J.L. Kline, R.E. Olsen, D. Edgell, S.P. Regan, A. Nikroo, H. Wilkins, J.D. Kikenny, A.S. Moore, The velocity campaign for ignition on NIF, Phys. Plasmas 19 (2012) 056305.10.1063/1.3694840
    [6]
    J.L. Kline, D.A. Callahan, S.H. Glenzer, N.B. Meezan, J.D. Moody, D.E. Hinkel, O.S. Jones, A.J. MacKinnon, R. Bennedetti, R.L. Berger, D. Bradley, E.L. Dewald, I. Bass, C. Bennett, M. Bowers, G. Brunton, J. Bude, S. Burkhart, A. Condor, J.M. Di Nicola, P. Di Nicola, S.N. Dixit, T. Döeppner, E.G. Dzenitis, G. Erber, J. Folta, G. Grim, S. Lenn, A. Hamza, S.W. Hann, J. Heebner, M. Henesian, M. Hermann, D.G. Hicks, W.W. Hsing, N. Izumi, K. Jancaitis, O.S. Jones, D. Kalantar, S.F. Khan, R. Kirkwook, G.A. Kyrala, K. LaFortune, O.L. Landen, L. Lain, D. Larson, S. Le Pape, T. Ma, A.G. MacPhee, P.A. Michel, P. Miller, M. Montincelli, A.S. Moore, A. Nikroo, M. Nostrand, R.E. Olson, A. Pak, H.S. Park, M.B. Schneider, M. Shaw, V.A. Smalyuk, D.J. Strozzi, T. Suratwala, L.J. Suter, R. Tommasini, R.P.J. Town, B. Van Wonterghem, P. Wegner, K. Widmann, C. Widmayer, H. Wilkens, E.A. Williams, M.J. Edwards, B.A. Remington, B.J. MacGowan, J.D. Kikenny, J.D. Lindl, L.J. Atherton, S.H. Batha, E. Moses, Hohlraum energetics scaling to 520 TW on the national ignition facility, Phys. Plasmas 20 (2013) 056314.10.1063/1.4803907
    [7]
    T. Döeppner, D.A. Callahan, O.A. Hurricane, D.E. Hinkel, T. Ma, H.-S. Park, L.F. Berzak Hopkins, D.T. Casey, P. Celliers, E.L. Dewald, T.R. Dittrich, S.W. Haan, A.L. Kritcher, A. MacPhee, S. Le Pape, A. Pak, P.K. Patel, P.T. Springer, J.D. Salmonson, R. Tommasini, L.R. Benedetti, E. Bond, D.K. Bradley, J. Caggiano, J. Church, S. Dixit, D. Edgell, M.J. Edwards, D.N. Fittinghoff, J. Frenje, M. Gatu Johnson, G. Grim, R. Hatarik, M. Havre, H. Herrmann, N. Izumi, S.F. Khan, J.L. Kline, J. Knauer, G.A. Kyrala, O.L. Landen, F.E. Merrill, J. Moody, A.S. Moore, A. Nikroo, J.E. Ralph, B.A. Remington, H.F. Robey, D. Sayre, M. Schneider, H. Streckert, R. Town, D. Turnbull, P.L. Volegov, A. Wan, K. Widmann, C.H. Wilde, C. Yeamans, Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the national ignition facility, Phys. Rev. Lett. 115 (2015) 055001.10.1103/physrevlett.115.055001
    [8]
    H.L. Wilkens, A. Nikroo, D.R. Wall, J.R. Wall, Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility, Phys. Plasmas 14 (2007) 056310.10.1063/1.2718527
    [9]
    L. Guo, Y.K. Ding, P.F. Xing, S.W. Li, L.Y. Kuang, Z.C. Li, T.M. Yi, G. L Ren, Z.Q. Wu, L.F. Jing, W.H. Zhang, X.Y. Zhan, D. Yang, B.B. Jiang, J.M. Yang, S.Y. Liu, S.E. Jiang, Y.S. Li, J. Liu, W.Y. Huo, K. Lan, Uranium hohlraum with an ultrathin uranium – nitride coating layer for low hard X-ray emission and high radiation temperature, New J. Phys. 17 (2015) 113004.10.1088/1367-2630/17/11/113004
    [10]
    A. Caruso, C. Strangio, The quality of the illumination for a spherical capsule enclosed in a radiating cavity, Jpn. J. Appl. Phys. 30 (1991) 1095.10.1143/jjap.30.1095
    [11]
    P. Amendt, C. Cerjan, D.E. Hinkel, J.L. Milovich, H.-S. Park, H.F. Robey, Rugby-like hohlraum experimental designs for demonstrating X-ray drive enhancement, Phys. Plasmas 15 (2008) 012702.10.1063/1.2825662
    [12]
    M. Vandenboomgaerde, J. Bastian, A. Casner, D. Galmiche, J.-P. Jadaud, S. Laffite, S. Liberatore, G. Malinie, F. Philippe, Prolate-spheriod (“Rugby-shaped”) hohlraum for inertial confinement fusion, Phys. Rev. Lett. 99 (2007) 065004.10.1103/physrevlett.99.065004
    [13]
    A. Casner, D. Galmiche, G. Huser, J.-P. Jadaud, S. Liberatore, M. Vandenboomgaerde, Indirect drive ablative Rayleigh – Taylor experiments with rugby hohlraums on OMEGA, Phys. Plasmas 16 (2009) 092701.10.1063/1.3224027
    [14]
    H.F. Robey, P. Amendt, H.-S. Park, R.P.J. Town, J.L. Milovich, T. Döppner, D.E. Hinkel, R. Wallace, C. Sorce, D.J. Strozzi, F. Phillippe, A. Casner, T. Caillaud, O. Landoas, S. Liberatore, M.-C. Monteil, F. Seguin, M. Rosenberg, C.K. Li, R. Petrasso, V. Glebov, C. Stoeckl, A. Nikroo, E. Giraldez, High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums, Phys. Plasmas 17 (2010) 056313.10.1063/1.3360926
    [15]
    F. Philippe, A. Casner, T. Caillaud, O. Landoas, M.C. Monteil, S. Liberatore, H.S. Park, P. Amendt, H. Robey, C. Sorce, Experimental demonstration of X-Ray drive enhancement with Rugby-Shaped hohlraums, Phys. Rev. Lett. 104 (2010) 035004.10.1103/physrevlett.104.035004
    [16]
    K. Lan, D. Lai, Y. Zhao, X. Li, Initial study and design on ignition ellipraum, Laser Part. Beams 30 (2012) 175.10.1017/s0263034611000772
    [17]
    R.H.H. Scott, D.S. Clark, D.K. Bradley, D.A. Callahan, M.J. Edwards, S.W. Haan, O.S. Jones, B.K. Spears, M.M. Marinak, R.P.J. Town, P.A. Norreys, L.J. Suter, Numerical modelling of the sensitivity of X-ray drive implosions to low-mode flux asymmetries, Phys. Rev. Lett. 110 (2013) 075001.10.1103/physrevlett.110.075001
    [18]
    J.D. Lindl, O. Landen, J. Edwards, E. Moses, N.I.C. Team, Review of the national ignition campaign 2009-2012, Phys. Plasmas 21 (2014) 020501.10.1063/1.4865400
    [19]
    P. Michel, L. Divol, E.A. Williams, S. Weber, C.A. Thomas, D.A. Callahan, S.W. Haan, J.D. Salmonson, S. Dixit, D.E. Hinkel, M.J. Edwards, B.J. MacGowan, J.D. Lindl, S.H. Glenzer, L.J. Suter, Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer, Phys. Rev. Lett. 102 (2009) 025004.10.1103/physrevlett.102.025004
    [20]
    Workshop on the science of fusion ignition on NIF, LLNL-TR-570412, 2012.
    [21]
    J.H. Nuckolls, NIC Final Review- Report to NNSA, LLNL-TR-607652, 2012.
    [22]
    United States Department of Energy, National Nuclear Security Administration's Path Forward to Achieving Ignition in the Inertial Confinement Fusion Program, Report to Congress, December 2012.
    [23]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, E.L. Dewald, T.R. Dittrich, T. Döppner1, D.E. Hinkel, L.F. Berzak Hopkins, J.L. Kline, S. Le Pape, T. Ma, A.G. MacPhee, J.L. Milovich, A. Pak, H.-S. Park, P.K. Patel, B.A. Remington, J.D. Salmonson, P.T. Springer, R. Tommasini, Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343.10.1038/nature13008
    [24]
    R.P.J. Town, D.K. Bradley, A. Kritcher, O.S. Jones, J.R. Rygg, R. Tommasini, M. Barrios, L.R. Benedetti, L.F. Berzak Hopkins, P.M. Celliers, T. Dopner, E.L. Dewald, D.C. Eder, J.E. Field, S.M. Glenn, N. Izumi, S.W. Haan, S.F. Khan, J.L. Kline, G.A. Kyrala, T. Ma, J.L. Milovich, J.D. Moody, S.R. Nagel, A. Pak, J.L. Peterson, H.F. Robey, J.S. Ross, R.H.H. Scott, B.K. Spears, M.J. Edwards, J.D. Kilkenny, O.L. Landen, Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility, Phys. Plasmas 21 (2014) 056313.10.1063/1.4876609
    [25]
    D.S. Clark, M.M. Marinak, C.R. Weber, D.C. Eder, S.W. Haan, B.A. Hammel, D.E. Hinkel, O.S. Jones, J.L. Milovich, P.K. Patel, H.F. Robey, J.D. Salmonson, S.M. Sepke, C.A. Thomas, Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign, Phys. Plasmas 22 (2015) 022703.10.1063/1.4906897
    [26]
    M. Murakami, Analysis of radiation symmetrization in hohlraum targets, Nucl. Fusion 32 (1992) 1715.10.1088/0029-5515/32/10/i02
    [27]
    D.W. Phillion, S.M. Pollaine, Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams, Phys. Plasmas 1 (1994) 2963.10.1063/1.870537
    [28]
    J.M. Wallace, T.J. Murphy, N.D. Delamater, K.A. Klare, J.A. Oertel, G.R. Magelssen, E.L. Lindman, A.A. Hauer, P. Gobby, J.D. Schnittman, R.S. Craxton, W. Seka, R. Kremens, D. Bradley, S.M. Pollaine, R.E. Turner, O.L. Landen, D. Drake, J.J. MacFarlane, Inertial confinement fusion with tetrahedral hohlraums at OMEGA, Phys. Rev. Lett. 82 (1999) 3807.10.1103/physrevlett.82.3807
    [29]
    S.A. Bel’kov, F.M. Abzaev, A.V. Bessarab, S.V. Bondarenko, A.V. Veselov, V.A. Gaidach, G.V. Dolgoleva, N.V. Zhidkov, V.M. Izgorodin, G.A. Kirillov, G.G. Kochemasov, D.N. Litvin, E.I. Mitrofanov, V.M. Murugov, L.S. Mkhitarian, S.I. Petrov, A.V. Pinegin, V.T. Punin, A.V. Senik, N.A. Suslov, Compression and heating of indirectly driven spherical fusion targets on the ISKRA-5 facility, Laser Part. Beams 17 (1999) 591–596.10.1017/s0263034699174020
    [30]
    S. Garanin, G.A. Kirillov, G.G. Kochemasov, L.S. Mkhitaryan, V.M. Murugov, S.A. Sukharev, N.V. Zhidkov, Investigations on inertial confinement fusion at the russian federal nuclear center – VNIIEF, Plasma Phys. Control. Fusion 45 (2003) A471–A476.10.1088/0741-3335/45/12a/030
    [32]
    Z. F. Fan, M. Chen, Z. S. Dai, H. B. Cai, S. P. Zhu, W. Y. Zhang and X. T. He, “A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion”, arXiv:1303.1252[physics.plasm-ph].
    [33]
    K. Lan, J. Liu, D.X. Lai, W.D. Zheng, X.T. He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraumto-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [34]
    K. Lan, X.T. He, J. Liu, W.D. Zheng, D.X. Lai, Octahedral spherical hohlraum and its laser arrangement for inertial fusion, Phys. Plasmas 21 (2014) 052704.10.1063/1.4878835
    [35]
    K. Lan, W.D. Zheng, Novel spherical hohlraum with cylindrical laser entrance holes and shields, Phys. Plasmas 21 (2014) 090704.10.1063/1.4895503
    [36]
    W.Y. Huo, J. Liu, Y.Q. Zhao, W.D. Zheng, K. Lan, Insensitivity of the octahedral spherical hohlraum to power imbalance, pointing accuracy, and assemblage accuracy, Phys. Plasmas 21 (2014) 114503.10.1063/1.4901812
    [37]
    H. Duan, C.S. Wu, W.B. Pei, S.Y. Zou, Theoretical study of symmetry of flux onto a capsule, Phys. Plasmas 22 (2015) 092704.10.1063/1.4930206
    [38]
    S. Li, K. Lan, J. Liu, Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums, Laser Part. Beams 33 (2015) 731.10.1017/S0263034615000890
    [39]
    S. Li, G. Li, D.F. Tian, L. Deng, An implicit Monte Carlo method for thermal radiation transport, Acta Phys. Sin. 62 (2013) 249501.
    [40]
    X.T. He, W.Y. Zhang, Eur. Phys. J. D. 44 (2007) 227.10.1140/epjd/e2007-00005-1
    [41]
    W.Y. Huo, G.L. Ren, K. Lan, X. Li, C.S. Wu, Y.S. Li, C.L. Zhai, X.M. Qiao, X.J. Meng, D.X. Lai, W.D. Zheng, P.J. Gu, W.B. Pei, S.W. Li, R.Q. Yi, T.M. Song, X.H. Jiang, D. Yang, S.E. Jiang, Y.K. Ding, Simulation study of Hohlraum experiments on the SGIII-prototype laser facility, Phys. Plasmas 17 (2010) 123114.10.1063/1.3526599
    [42]
    W.Y. Huo, K. Lan, Y.S. Li, D. Yang, S.W. Li, X. Li, C.S. Wu, G.L. Ren, Y.Q. Zhao, S.Y. Zou, W.D. Zheng, P.J. Gu, M. Wang, R.Q. Yi, X.H. Jiang, T.M. Song, Z.C. Li, L. Guo, Y.G. Liu, X.Y. Zhan, F. Wang, X.S. Peng, H. Zhang, J.M. Yang, S.Y. Liu, S.E. Jiang, Y.K. Ding, Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII-prototype laser facility, Phys. Rev. Lett. 109 (2012) 145004.10.1103/physrevlett.109.145004
    [43]
    W.Y. Huo, D. Yang, K. Lan, S.W. Li, Y.S. Li, X. Li, C.S. Wu, G.L. Ren, Y.Q. Zhao, S.Y. Zou, W.D. Zheng, P.J. Gu, M. Wang, R.Q. Yi, X.H. Jiang, T.M. Song, Z.C. Li, L. Guo, Y.G. Liu, X.Y. Zhan, F. Wang, X.S. Peng, H. Zhang, J.M. Yang, S.Y. Liu, S.E. Jiang, Y.K. Ding, The radiation temperature and M-band fraction inside hohlraum on the SGIII-prototype laser facility, Phys. Plasmas 21 (2014) 022704.10.1063/1.4865222
    [44]
    L. Ren, D. Zhao, J. Zhu, Beam guiding system geometric arrangement in the target area of high-power laser drivers, High Power Laser Sci. Eng. 3 (2015) e12.10.1017/hpl.2015.6
    [45]
    H.S. Zhang, D. Yang, P. Song, S.Y. Zou, Y.Q. Zhao, S.W. Li, Z.C. Li, L. Guo, F. Wang, X.S. Peng, H.Y. Wei, T. Xu, W.D. Zheng, P.J. Gu, W.B. Pei, S.E. Jiang, Y.K. Ding, X-ray conversion efficiency and radiation non-uniformity in the hohlraum experiments at Shenguang-III prototype laser facility, Phys. Plasmas 21 (2014) 112709.10.1063/1.4901919
    [46]
    K. Ren, S.Y. Liu, L.F. Hou, H.B. Du, G.L. Ren, W.Y. Huo, L.F. Jing, Y. Zhao, Z.W. Yang, M.X. Wei, K.L. Deng, L. Yao, Z.C. Li, D. Yang, C. Zhang, J. Yan, G.H. Yang, S.W. Li, S.E. Jiang, Y.K. Ding, J. Liu, K. Lan, Direct measurement of X-ray flux for a pre-specified highly-resolved region in hohlraum, Opt. Express 23 (2015) A1072.10.1364/oe.23.0a1072
    [47]
    M.D. Rosen, H.A. Scott, D.E. Hinkel, E.A. Williams, D.A. Callahan, R.P.J. Town, L. Divol, P.A. Michel, W.L. Kruer, L.J. Suter, R.A. London, J.A. Harte, G.B. Zimmerman, The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums, High Energy Density Phys. 7 (2011) 180–190.10.1016/j.hedp.2011.03.008
    [48]
    L.F. Berzak Hopkins, S. Le Pape, L. Divol, N.B. Meezan, A.J. Mackinnon, D.D. Ho, O.S. Jones, S. Khan, J.L. Milovich, J.S. Ross, P. Amendt, D. Casey, P.M. Celliers, A. Pak, J.L. Peterson, J. Ralph, J.R. Rygg, Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators, Phys. Plasmas 22 (2015) 056318.10.1063/1.4921151
    [49]
    N.B. Meezan, L.F. Berzak Hopkins, S. Le Pape, L. Divol, A.J. MacKinnon, T. Döeppner, D.D. Ho, O.S. Jones, S.F. Khan, T. Ma, J.L. Milovich, A.E. Pak, J.S. Ross, C.A. Thomas, L.R. Benedetti, D.K. Bradley, P.M. Celliers, D.S. Clark, J.E. Field, S.W. Haan, N. Izumi, G.A. Kyrala, J.D. Moody, P.K. Patel, J.E. Ralph, J.R. Rygg, S.M. Sepke, B.K. Spears, R. Tommasini, R.P.J. Town, J. Biener, R.M. Bionta, E.J. Bond, J.A. Caggiano, M.J. Eckart, M. Gatu Johnson, G.P. Grim, A.V. Hamza, E.P. Hartouni, R. Hatarik, D.E. Hoover, J.D. Kilkenny, B.J. Kozioziemski, J.J. Kroll, J.M. McNaney, A. Nikroo, D.B. Sayre, M. Stadermann, C. Wild, B.E. Yoxall, O.L. Landen, W.W. Hsing, M.J. Edwards, Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums, Phys. Plasmas 22 (2015) 062703.10.1063/1.4921947
    [50]
    D.A. Callahan, P. Amendt, E.L. Dewald, S.W. Haan, D.E. Hinkel, N. Izurni, O.S. Jones, O.L. Landen, J.D. Lindl, S.M. Pollaine, L.J. Suter, M. Tabak, R.E. Turner, Using laser entrance hole shields to increase coupling efficiency in indirect drive ignition targets for the National Ignition Facility, Phys. Plasmas 13 (2006) 056307.10.1063/1.2196287
    [51]
    N.D. Delamater, T.J. Murphy, A.A. Hauer, R.L. Kauffman, A.L. Richard, E.L. Lindman, G.R. Magelssen, B.H. Wilde, D.B. Harris, B.A. Failor, J. Wallace, L.V. Powers, S.M. Pollaine, L.J. Suter, R. Chrien, T.D. Shepard, H.A. Rose, E.A. Williams, M.B. Nelson, M.D. Cable, J.B. Moore, M.A. Salazar, K. Gifford, Symmetry experiment in gas-filled hohlraums at NOVA, Phys. Plasmas 3 (1996) 2022.10.1063/1.871999
    [52]
    G. Huser, C. Courtois, M.-C. Monteil, Wall and laser spot motion in cylindrical hohlraums, Phys. Plasmas 16 (2009) 032703.10.1063/1.3099054
    [53]
    E.L. Dewald, L.J. Suter, O.L. Landen, J.P. Holder, J. Schein, F.D. Lee, K.M. Campbell, F.A. Weber, D.G. Pellinen, M.B. Schneider, J.R. Celeste, J.W. Mcdonald, J.M. Foster, C.J. Niemann, A. Mackinnon, S.H. Glenzer, B.K. Young, C.A. Haynam, M.J. Shaw, R.E. Turner, D. Froula, R.L. Kauffman, B.R. Thomas, L.J. Atherton, R.E. Bonanno, S.N. Dixit, D.C. Eder, G. Holtmeier, D.H. Kalantar, A.E. Koniges, B.J. Macgowan, K.R. Manes, D.H. Munro, J.R. Murray, T.G. Parham, K. Piston, B.M. Van Wonterghem, R.J. Wallace, P.J. Wegner, P.K. Whitman, B.A. Hammel, E.I. Moses, Radiation-ddriven hydrodynamics of high-Z hohlraums on the national ignition facility, Phys. Rev. Lett. 95 (2005) 215004.10.1103/physrevlett.95.215004
    [54]
    M.B. Schneider, D.E. Hinkel, O.L. Landen, D.H. Froula, R.F. Heeter, A.B. Langdon, M.J. May, J. McDonald, J.S. Ross, M.S. Singh, L.J. Suter, K. Widmann, B.K. Young, Plasma filling in reduced-scale hohlraums irradiated with multiple beam cones, Phys. Plasmas 13 (2006) 112701.10.1063/1.2370697
    [55]
    J.W. Mcdonald, L.J. Suter, O.L. Landen, J.M. Foster, J.R. Celeste, J.P. Holder, E.L. Dewald, M.B. Schneider, D.E. Hinkel, R.L. Kauffman, L.J. Atherton, R.E. Bonanno, S.N. Dixit, D.C. Eder, C.A. Haynam, D.H. Kalantar, A.E. Koniges, F.D. Lee, B.J. Macgowan, K.R. Manes, D.H. Munro, J.R. Murray, M.J. Shaw, R.M. Stevenson, T.G. Parham, B.M. Van Wonterghem, R.J. Wallace, P.J. Wegner, P.K. Whitman, B.K. Young, B.A. Hammel, E.I. Moses, Hard X-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility, Phys. Plasmas 13 (2006) 032703.10.1063/1.2186927
    [56]
    K. Lan, P.J. Gu, G.L. Ren, C.S. Wu, W.Y. Huo, D.X. Lai, X.T. He, An initial design of hohlraum driven by a shaped laser pulse, Laser Part. Beams 280 (2010) 421.10.1017/s026303461000042x
    [57]
    S. M. Pollaine and J. D. Schnittman “Tetrahedral Hohlraums”, UCRL-LR-105821-97-1.
    [58]
    P. Michel, L. Divol, E.L. Dewald, J.L. Milovich, M. Hohenberger, O.S. Jones, L. Berzak Hopkins, “Multibeam stimulated Raman scattering in inertial fusion conditions”, Physical Review letters 115 (2015) 055003.10.1103/physrevlett.115.055003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)

    Article Metrics

    Article views (85) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return