Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Sharkov Boris Yu., Hoffmann Dieter H.H., Golubev Alexander A., Zhao Yongtao. High energy density physics with intense ion beams[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.01.002
Citation: Sharkov Boris Yu., Hoffmann Dieter H.H., Golubev Alexander A., Zhao Yongtao. High energy density physics with intense ion beams[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.01.002

High energy density physics with intense ion beams

doi: 10.1016/j.mre.2016.01.002
More Information
  • Corresponding author: *Corresponding author. Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt, Germany. E-mail address: hoffmann@physik.tu-darmstadt.de (D.H.H. Hoffmann).
  • Received Date: 2015-11-18
  • Accepted Date: 2015-11-30
  • Publish Date: 2016-01-15
  • We review the development of High Energy Density Physics (HEDP) with intense heavy ion beams as a tool to induce extreme states of matter. The development of this field connects intimately to the advances in accelerator physics and technology. We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target. Intensity limitations and potential solutions to overcome these limitations are discussed. This is exemplified by citing examples from existing machines at the Gesellschaft für Schwerionenforschung (GSI-Darmstadt), the Institute of Theoretical and Experimental Physics in Moscow (ITEP-Moscow), and the Institute of Modern Physics (IMP-Lanzhou). Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility (HIAF), proposed for China will be included. Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.
  • loading
  • [1]
    W.J. Hogan, E. Moses, B. Warner, M. Sorem, J. Soures, J. Hands, The national ignition facility project: an update, Fusion Technol. 39 (2) (2001) 329–335.
    [2]
    J.D. Lindl, L.J. Atherton, P.A. Amendt, S. Batha, P. Bell, et al., Progress towards ignition on the national ignition facility, Nucl. Fusion 51 (9) (2011) 324–330.
    [3]
    E.I. Moses, The national ignition facility: status and progress towards fusion ignition, Fusion Sci. Technol. 61 (1t) (2012) 3–8.10.13182/fst12-1t1
    [4]
    A.V. Kharlov, B.M. Kovalchuk, E.V. Kumpyak, G.V. Smorudov, et al., Physical constraints at design of a high current inductor, Laser Part. Beams 32 (2014) 471–476.10.1017/s0263034614000408
    [5]
    E.V. Chernykh, K.V. Gorbachev, V.M. Mikhaylov, E.V. Nesterov, V.A. Stroganov, Nanosecond megavolt charging of forming lines by explosive MCGs, IEEE Trans. Plasma Sci. 43 (6) (2015) 2064–2069.10.1109/tps.2015.2431971
    [6]
    S.G. Garanin, A.V. Ivanovsky, Explosive magnetic pulsed power system for thermonuclear ignition by Z-pinch x-radiation, J. Appl. Mech. Tech. Phys. 56 (1) (2015) 1–9.10.1134/s0021894415010010
    [7]
    M.R. Gomez, S.A. Slutz, A.B. Sefkow, K.D. Hahn, S.B. Hansen, et al., Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments, Phys. Plasmas 22 (5) (2015) 1–10.10.1063/1.4919394
    [8]
    F.Q. Zhang, R.K. Xu, Z.P. Xu, J.L. Yang, Z.H. Li, et al., Study of implosion dynamics of Z-pinch dynamic hohlraum on the Angara-5-1 facility, Eur. Phys. J. D 69 (2) (2015) 39.10.1140/epjd/e2014-50392-y.
    [9]
    V. Fortov, M. Lebedev, V. Ternovoi, Residual temperature-measurement of the shocked Lead by the fast pyrometer, Rev. Gen. De. Therm. 31 (371) (1992) 589–591.
    [10]
    V.E. Fortov, Intense shock waves and extreme states of matter, Physics-Uspekhi 50 (4) (2006) 333–353.10.1070/pu2007v050n04abeh006234
    [11]
    N.A. Tahir, R. Schmidt, M. Brugger, R. Assmann, A. Shutov, D.H.H. Hoffmann, et al., Generation of warm dense matter and strongly coupled plasmas using the high radiation on materials facility at the CERN super proton synchrotron, Phys. Plasmas 16 (8) (2009) 082703 1-8.10.1063/1.3204137
    [12]
    D.H.H. Hoffmann, N.A. Tahir, S. Udrea, O. Rosmej, C.V. Meister, et al., High energy density physics with heavy ion beams and related interaction phenomena, Contrib. Plasma Phys. 50 (1) (2010) 7–15.10.1002/ctpp.201010004
    [13]
    J.J. Barnard, R.M. More, M. Terry, A. Friedman, E. Henestroza, et al., NDCX-II target experiments and simulations, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 733 (2012) 45–50.10.1016/j.nima.2013.05.096
    [14]
    J.D. Lindl, L.J. Atherton, P.A. Amendt, S. Batha, P. Bell, et al., Progress towards ignition on the national ignition facility, Nucl. Fusion 51 (9) (2011) 1–8.
    [15]
    V.A. Smalyuk, H.F. Robey, T. Doeppner, O.S. Jones, J.L. Milovich, et al., First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility, Phys. Plasma 22 (2015) 080703 1–5.10.1063/1.4929912
    [16]
    H. Haseroth, H. Hora, Physical Mechanisms leading to high currents of highly charged ions in laser driven ion sources, Laser Part. Beams 14 (1996) 393–438.10.1017/s0263034600010119
    [17]
    D. Böhne, I. Hofmann, G. Kessler, G.L. Kulcinski, J. Meyer-ter-Vehn, U. von Möllendorff, G.A. Moses, R.W. Müller, I.N. Sviatoslavsky, D.K. Sze, W. Vogelsang, HIBALL: a conceptual heavy ion beam driven reactor study, Nucl. Eng. Des. 73 (2) (1982) 195–200 and Kernforschungszentrum Karlsruhe, Report KfK 3202 pages 1-367(1981).10.1016/0029-5493(82)90293-x
    [18]
    HIDIF Study, European study group on heavy ion driven inertial fusion, in: I. Hofmann, G. Plass (Eds.), GSI Darmstadt, Report GSI-98–06, 1998.
    [19]
    R.M. Bock, I. Hofmann, D.H.H. Hofmann, G. Logan, Inertial Confinement Fusion: Heavy Ions, Landolt Börnstein, New Series VIII/3 Chapter 10, 2004.
    [20]
    S.P.D. Mangles, et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature 431 (2004) 535–538.10.1038/nature02939
    [21]
    H. Schwoerer, et al., Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets, Nature 439 (2006) 445–448.10.1038/nature04492
    [22]
    W.P. Yao, et al., Generation of monoenergetic proton beams by a combined scheme with an overdense hydrocarbon target and an under dense plasma gas irradiated by ultra-intense laser pulse, Laser Part. Beams 32 (2014) 583–589.10.1017/s0263034614000561
    [23]
    J. Collier, G. Hall, H. Haseroth, H. Kugler, A. Kuttenberger, K. Langbein, B. Sharkov, et al., The CERN laser-ion source, Laser Part. Beams 14 (1994) 283–292.10.1017/s0263034600010041
    [24]
    B. Sharkov, A. Shumshurov, I. Roudskoy, A. Kilipio, E. Shaskov, N. Kiselev, P. Pashinin, Highly charged ions from Nd-laser produced plasma of medium and high-Z targets, Laser Part. Beams 17 (1999) 741–747.10.1017/s0263034699174184
    [25]
    S.A. Kondrashev, J. Collier, T.R. Sherwood, Space-charge compensation of highly charged ion beam from laser ion source, Laser Part. Beams 14 (1996) 323–333.10.1017/s0263034600010065
    [26]
    V. Dubenkov, B. Sharkov, A. Golubev, A. Shumshurov, O. Shamaev, D.H.H. Hoffmann, et al., Acceleration of Ta 10+ produced by laser ion source in RFQ-MAXILAC, Laser Part. Beams 14 (1996) 385–389.10.1017/s0263034600010107
    [27]
    S. Ikeda, K. Horioka, M. Okamura, Investigation of the tail of a Fe plasma plume passing through solenoidal magnetic field for a laser ion source, IEEE Trans. Plasma Sci. 43 (2015) 3456–3460.10.1109/tps.2015.2421284
    [28]
    W. Bang, B.J. Albright, P.A. Bradley, D.-C. Gauthier, et al., Visualization of Expanding Warm Dense Gold and Diamond Heated Rapidly by Laser-generated Ion Beams, Sci. Rep. 5, Article number 14318 (2015).10.1038/srep14318
    [29]
    A.W. Maschke, Space Charge Limit for Linear Accelerators, Report BNL 51022, 1979, pp. 1–9.
    [30]
    I.M. Kapchinsky, V.A. Teplyakov, Linear accelerator with spatially homogeneous strong focusing, Prib. Tekh. Eksp. (1970) 19 No.2.
    [31]
    R.W. Müller, H. Deitinghoff, K. Halfmann, P. Junior, H. Klein, et al., Proton model for a RFQ-heavy ion linac, IEEE Trans. Nucl. Sci. 28 (1981) 2862–2864.10.1109/tns.1981.4331939
    [32]
    N.N. Alekseev, D.G. Koshkarev, B. Yu, Sharkov, Non-Liouvillian carbon nucleus accumulation at the ITEP storage accelerator facility, JETP Lett. 77 (3) (2003) 123–125.10.1134/1.1567772
    [33]
    G.I. Budker, G.I. Dimov, A.G. Popov, Y.K. Sviridov, A.M. Sukhina, et al., Experiments on charge-exchange injection of protons into a storage ring, J. Nucl. Energy, Part C 8 (1966) 692–694.10.1088/0368-3281/8/6/309
    [34]
    B.Yu. Sharkov, D.G. Koshkarev, M.D. Churazov, N.N. Alexeev, M.M. Basko, A.A. Golubev, et al., Heavy-ion fusion activities at ITEP, Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 20–26.10.1016/s0168-9002(98)00600-7
    [35]
    K. Blaschke, U. Blell, O. Boine-Frankenheim, H. Eickhoff, M. Emmerling, et al., SIS-status Report, GSI 2001-1, 2001, pp. 184–186 (See also SIS status reports of the following years in GSI-reports).
    [36]
    D. Möhl, Transverse space charge effects in heavy ion storage rings for inertial confinement fusion, Il Nuovo Cimento 106 (1993) 1687–1695.10.1007/bf02821268
    [37]
    C. Omet, P. Spiller, et al., Charge change-induced beam losses under dynamic vacuum conditions in ring accelerators, New J. Phys. 8 (2006) 284–307.10.1088/1367-2630/8/11/284
    [38]
    L. Bozyk, Entwicklung und Test eines Kryokollimator Prototypen zur Kontrolle des dynamischen Vakuums im SIS 100, PhD-Thesis TU-Darmstadt D17, 2012, pp. 1–140.
    [39]
    C.A. Andre, F. Becker, C. Dorn, P. Forck, H. Graf, R. Haseitl, et al., Commissioning of Beam Induced Fluorescence Monitor at Unilac, GSI Annual Scientific Report Bd. Accelerators-21, 2008, S. 124-126, 2008.
    [40]
    P.K. Roy, S.S. Yu, E. Henestroza, S. Eylon, D.B. Shuman, J. Ludvig, F.M. Bieniosek, W.I. Waldron, W.G. Greenway, D.L. Vanecek, R. Hannink, M. Amezcua, Electron-beam diagnostic for space-charge measurement of an ion beam. , Rev. Sci. Instrum. 76 (2005) 023301 1–8.10.1063/1.1847392
    [41]
    S. El Moussati, Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen, Dissertation D17 TU-Darmstadt, 2014, pp. 1–87.
    [42]
    R. Kowalewicz, M.L. Discampamorte, S. Maury, S. Milner, H. Riege, et al., Beam tests with the CERN plasma lens, in: H. Henke (Ed.), EPAC 1992: Third European Particle Accelerator Conference, vol. 2, 1992 1593–1541.
    [43]
    A. Tauschwitz, E. Boggasch, D.H.H. Hoffmann, M.U. De Magistris, U. Neuner, et al., The plasma lens solution for heavy-ion beam focusing, Il Nuovo Cimento A 106 (1993) 1733–1737.10.1007/bf02821274
    [44]
    D.H.H. Hoffmann, V.E. Fortov, I.V. Lomonosov, V. Mintsev, N.A. Tahir, et al., Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies, Phys. Plasmas 9 (9) (2002) 3651–3654.10.1063/1.1498260
    [45]
    A. Frank, A. Blazevic, K. Harres, T. Heßling, D.H.H. Hoffmann, et al., Energy loss of argon in laser-generated carbon plasma, Phys. Rev. Lett. 110 (2013) 115001 1-4.10.1103/physrevlett.110.115001
    [46]
    I.E. Bakhmetjev, A.D. Fertman, A.A. Golubev, A.V. Kantsyrev, V.E. Luckjashin, et al., Research into the advanced experimental methods for precision ion stopping range measurements in matter, Laser Part. Beams 21 (2003) 1–6.10.1017/s0263034602211015
    [47]
    R. Cheng, X. Zhou, H. Peng, Y. Sun, Wang Y, D.H.H. Hoffmann, et al., with Measurement of the Energy Loss by Slow Protons in a Plasma Target To be submitted.
    [48]
    D.H.H. Hoffmann, K. Weyrich, H. Wahl, T. Peter, J. Meyertervehn, et al., Experimental-observation of enhanced stopping of heavy-ions in a hydrogen plasma, Z. Phys. A Hadrons Nucl. 330 (3) (1988) 339–340.10.1007/bf01294879
    [49]
    K. Weyrich, D.H.H. Hoffmann, J. Jacoby, H. Wahl, R. Noll, et al., Energy loss of heavy ions in a hydrogen plasma, Nucl. Instrum. Methods Phys. Res., Sect. A 278 (1989) 52–55.10.1016/0168-9002(89)91129-7
    [50]
    D.H.H. Hoffmann, K. Weyrich, H. Wahl, D. Gardes, R. Bimbot, C. Fleurier, Energy-loss of heavy-ions in a plasma target, Phys. Rev. A 42 (4) (1990) 2313–2321.10.1103/physreva.42.2313
    [51]
    J. Jacoby, D.H.H. Hofmann, W. Laux, R.W. Müller, H. Wahl, Weyrich, et al., Stopping of heavy-ions in a hydrogen plasma, Phys. Rev. Lett. 74 (9) (1995) 1550–1553.10.1103/physrevlett.74.1550
    [52]
    K.G. Dietrich, D.H.H. Hoffmann, E. Boggasch, J. Jacoby, H. Wahl, et al., Charge state of fast heavy-ions in a hydrogen plasma, Phys. Rev. Lett. 69 (25) (1992) 3623–3626.10.1103/physrevlett.69.3623
    [53]
    A. Frank, A. Blazevic, V. Bagnoud, M.M. Basko, M. Börner, Energy loss and charge transfer of argon in a carbon plasma, Phys. Rev. Lett. 110 (2013) 115001 1-4.10.1103/PhysRevLett.110.115001
    [54]
    W. Cayzac, Ion Energy Loss at Maximum Stopping Power in a Laser-generated Plasma, PhD Thesis at University of Bordeaux and TU-Darmstadt, D17, 2013 156 pages.
    [55]
    D.H.H. Hoffmann, V. Fortov, M. Kuster, V. Mintsev, B. Sharkov, N.A. Tahir, S. Udrea, D. Varentsov, K. Weyrich, High energy density physics generated by intense heavy ion beams, Astrophys. Space Sci. 322 (2009) 167–177.10.1007/s10509-009-0001-2
    [56]
    P.A. Ni, M.I. Kulish, V. Mintsev, D.N. Nikolaev, V.Y. Ternovoy, Temperature measurement of warm dense matter generated by heavy-ion beams, Laser Part. Beams 26 (2008) 583–589.10.1017/s0263034608000645
    [57]
    D. Varentsov, N.A. Tahir, I.V. Lomonosov, D.H.H. Hoffmann, J. Wieser, V. Fortov, Energy loss dynamics of an intense uranium beam interacting with solid neon for equation-of-state studies, Europhys. Lett. 64 (2003) 57–63.10.1209/epl/i2003-00125-0
    [58]
    P.M. Lang, Aufbau und Test des Protonenmikroskops PRIOR, Dissertation D-17, TU-Darmstadt, 2014 104 pages.
    [59]
    V.A. Andreev, G. Parisi, 90-Apart-stem RFQ structure for wide range of frequencies, in: Particle Acc. Conf. Proc., Washington, DC, May 1993, pp. 3124–3130.
    [60]
    A.A. Kolomiets, V.A. Andreev, D.A. Kashinsky, S.A. Minaev, V.I. Pershin, R.M. Vengrov, V.L. Zviagintsev, S.G. Yaramishev, G. Parisi, Progress work on 27 MHz Heavy ion RFQ, in: Proc. of the XIX International LINAC Conf., Chicago, 1998, pp. 974–978.
    [62]
    M.M. Basko, A.A. Drozdovskiy, A.A. Golubev, Plasma lens for the heavy ion accelerator at ITEP, Phys. Part. Nucl. Lett. 5 (7) (2008) 582–585.10.1134/s1547477108070091
    [63]
    A. Drozdowskiy, N. Alexeev, S. Drozdowskiy, A. Golubev, Yu. Novozhilov, P. Sasorov, S. Savin, V. Yanenko, The nonlinear transformation of an ion beam in the plasma lens, Phys. Part. Nucl. Lett. 9 (4–5) (2012) 356–359.10.1134/s1547477112040140
    [64]
    Sergey Minaev, Nikolay Alexeev, Dieter H.H. Hoffmann, Timur Kulevoy, Boris Sharkov, Alexey Sitnikov, Naeem Ah-mad Tahir, Dmitry Varentsov, Heavy ion hollow beam formation at the energy of 1 AGeV for implosion experiments using an original RF system for fast rotation, Nucl. Instrum. Methods Phys. Res., Sect. A 620 (2010) 99–104.10.1016/j.nima.2010.03.097
    [65]
    U. Herleb, H. Riege, Experiments on beam charge neutralization with pulsed electron beams, Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 464–467.10.1016/s0168-9002(98)00420-3
    [66]
    R. Geller, B. Jacquot, R. Pauthenet, Micromafios- and ECR ion-source for multiply charged ions, Rev. Phys. Appl. 15 (1998) 995–1005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(30)

    Article Metrics

    Article views (132) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return