Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Nilsen Joseph. Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2015.12.001
Citation: Nilsen Joseph. Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2015.12.001

Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes

doi: 10.1016/j.mre.2015.12.001
  • Received Date: 2015-08-31
  • Accepted Date: 2015-11-16
  • Publish Date: 2016-01-15
  • Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those used in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. These bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.
  • loading
  • [1]
    M.A. Duguay, P.M. Rentzepis, Some approaches to vacuum UV and X-ray lasers, Appl. Phys. Lett. 10 (1967) 350–352.10.1063/1.1728208
    [2]
    R.C. Elton, Quasi-stationary population inversion on Kα transitions, Appl. Opt. 14 (1975) 2243–2249.10.1364/ao.14.002243
    [3]
    K. Lan, E.E. Fill, J. Meyer-ter-Vehn, Simulation of He-α and Ly-α soft X-ray lasers in helium pumped by DESY/XFEL-radiation, Europhys. Lett. 64 (2003) 454–460.10.1209/epl/i2003-00232-4
    [4]
    Ke Lan, Ernst Fill, Jürgen Meyer-ter-Vehn, Photopumping of XUV lasers by XFEL radiation, Laser Part. Beams 22 (2004) 261–266.10.1017/s0263034604223084
    [5]
    N. Rohringer, D. Ryan, R.A. London, M. Purvis, F. Albert, et al., Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser, Nature 481 (2012) 488–491.10.1038/nature10721
    [6]
    A.V. Vinogradov, I.I. Sobelman, E.A. Yukov, Possibility of constructing a far-ultraviolet laser utilizing transitions in multiply charged ions in an inhomogeneous plasma, Sov. J. Quantum Electron 5 (1975) 59–63.10.1070/qe1975v005n01abeh010704
    [7]
    J. Nilsen, J.H. Scofield, E.A. Chandler, Reinvestigating the early resonantly photopumped X-ray laser schemes, Appl. Opt. 31 (1992) 4950–4956.10.1364/ao.31.004950
    [8]
    J. Nilsen, E. Chandler, Analysis of the resonantly photopumped Na-Ne X-ray laser scheme, Phys. Rev. A 44 (1991) 4591–4598.10.1103/physreva.44.4591
    [9]
    J.A. Bearden, X-ray Wavelengths, Rev. Mod. Phys. 39 (1967) 78–124.10.1103/revmodphys.39.78
    [10]
    I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper, An atomic multiconfigurational Dirac-Fock package, Comput. Phys. Commun. 21 (1980) 207.10.1016/0010-4655(80)90041-7
    [11]
    H. Aksela, S. Aksela, J. Tulkki, T. Åberg, G.M. Bancroft, et al., Auger emission from the resonantly excited 1s2s22p63p state of Ne, Phys. Rev. A 39 (1989) 3401–3405.10.1103/physreva.39.3401
    [12]
    J.-E. Rubensson, M. Neeb, A. Bringer, M. Biermann, W. Eberhardt, Electronic state-lifetime interference observed at Ne K inter-resonance excitation, Chem. Phys. Lett. 257 (1996) 447–452.10.1016/0009-2614(96)00596-9
    [13]
    NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm.
    [14]
    H.A. Scott, Cretin – a radiative transfer capability for laboratory plasmas, JQSRT 71 (2001) 689–701.10.1016/s0022-4073(01)00109-1
    [15]
    A.E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986, pp. 221–242.
    [16]
    K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, H. Mark, Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations, Atomic. Data Nucl. Data Tables 18 (1976) 243–291.10.1016/0092-640x(76)90027-9
    [17]
    E. Antonides, E.C. Janse, G.A. Sawatzky, LMM Auger spectra of Cu, Zn, Ga, and Ge. I. Transition probabilities, term splittings, and effective Coulomb interaction, Phys. Rev. B 15 (1977) 1669–1679.10.1103/physrevb.15.1669
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (95) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return