Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Wu Zhaohui, Zuo Yanlei, Zeng Xiaoming, Li Zhaoli, Zhang Zhimeng, Wang Xiaodong, Hu Bilong, Wang Xiao, Mu Jie, Su Jingqin, Zhu Qihua, Dai Yaping. Laser compression via fast-extending plasma gratings[J]. Matter and Radiation at Extremes, 2022, 7(6): 064402. doi: 10.1063/5.0109574
Citation: Wu Zhaohui, Zuo Yanlei, Zeng Xiaoming, Li Zhaoli, Zhang Zhimeng, Wang Xiaodong, Hu Bilong, Wang Xiao, Mu Jie, Su Jingqin, Zhu Qihua, Dai Yaping. Laser compression via fast-extending plasma gratings[J]. Matter and Radiation at Extremes, 2022, 7(6): 064402. doi: 10.1063/5.0109574

Laser compression via fast-extending plasma gratings

doi: 10.1063/5.0109574
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zuoyanlei@tsinghua.org.cn and ypdai@mail.shcnc.ac.cn; a)Authors to whom correspondence should be addressed: zuoyanlei@tsinghua.org.cn and ypdai@mail.shcnc.ac.cn
  • Received Date: 2022-07-13
  • Accepted Date: 2022-08-31
  • Available Online: 2022-11-01
  • Publish Date: 2022-11-01
  • A method is proposed for compressing laser pulses by fast-extending plasma gratings (FEPGs), which are created by ionizing a hypersonic wave generated by stimulated Brillouin scattering in a background gas. Ionized by a short laser pulse, the phonon forms a light-velocity FEPG to fully reflect a resonant pump laser. As the reflecting surface moves with the velocity of light, the reflected pulse is temporally overlapped and compressed. One- and two-dimensional fully kinetic particle-in-cell simulations with a laser wavelength of 1 µm show that in this regime, a pump pulse is compressed from 10–40 ps to 7–10 fs (i.e., a few optical cycles), with a two-dimensional transfer efficiency up to 60%. This method is a promising way to produce critical laser powers while avoiding several significant problems that arise in plasma-based compressors, including an unwanted linear stage, major plasma instabilities, and the need for seed preparation.
  • loading
  • [1]
    G. Lehmann and K. H. Spatschek, “Transient plasma photonic crystals for high-power lasers,” Phys. Rev. Lett. 116, 225002 (2016).10.1103/physrevlett.116.225002
    [2]
    A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, and F. Quéré, “Plasma holograms for ultrahigh-intensity optics,” Nat. Phys. 13, 440 (2017).10.1038/nphys4007
    [3]
    I. Y. Dodin and N. J. Fisch, “Storing, retrieving, and processing optical information by Raman backscattering in plasmas,” Phys. Rev. Lett. 88, 165001 (2002).10.1103/physrevlett.88.165001
    [4]
    H. M. Milchberg, C. G. Durfee III, and T. J. McIlrath, “High-order frequency conversion in the plasma waveguide,” Phys. Rev. Lett. 75, 2494 (1995).10.1103/physrevlett.75.2494
    [5]
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).10.1038/nphys595
    [6]
    B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2, 456–459 (2006).10.1038/nphys338
    [7]
    I. Geltner, Y. Avitzour, and S. Suckewer, “Picosecond pulse frequency upshifting by rapid free-carrier creation in ZnSe,” Appl. Phys. Lett. 81, 226 (2002).10.1063/1.1491290
    [8]
    K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).10.1103/PhysRevE.98.023202
    [9]
    A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123, 124801 (2019).10.1103/physrevlett.123.124801
    [10]
    H. Peng, C. Riconda, S. Weber, C. T. Zhou, and S. C. Ruan, “Frequency conversion of lasers in a dynamic plasma grating,” Phys. Rev. Appl. 15, 054053 (2021).10.1103/physrevapplied.15.054053
    [11]
    H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).10.1063/1.2132074
    [12]
    V. M. Malkin, G. Shvets, and N. J. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448–4451 (1999).10.1103/physrevlett.82.4448
    [13]
    A. A. Andreev, C. Riconda, V. T. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13, 053110 (2006).10.1063/1.2201896
    [14]
    J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser-pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).10.1103/physrevlett.95.205003
    [15]
    J. Schreiber, C. Bellei, S. P. D. Mangles, C. Kamperidis, S. Kneip, S. R. Nagel,C. A. J. Palmer, P. P. Rajeev, M. J. V. Streeter, and Z. Najmudin, “Complete temporal characterization of asymmetric pulse compression in a laser wakefield,” Phys. Rev. Lett. 105, 235003 (2010).10.1103/physrevlett.105.235003
    [16]
    V. M. Malkin, G. Shvets, and N. J. Fisch, “Detuned Raman amplification of short laser pulses in plasma,” Phys. Rev. Lett. 84, 1208–1211 (2000).10.1103/physrevlett.84.1208
    [17]
    R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).10.1038/nphys1793
    [18]
    S. Weber, C. Riconda, L. Lancia, J. R. Marquès, G. A. Mourou, and J. Fuchs, “Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas,” Phys. Rev. Lett. 111, 055004 (2013).10.1103/PhysRevLett.111.055004
    [19]
    L. Lancia, A. Giribono, L. Vassura, M. Chiaramello, C. Riconda, S. Weber, A. Castan, A. Chatelain, A. Frank, T. Gangolf, M. N. Quinn, J. Fuchs, and J. R. Marquès, “Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification,” Phys. Rev. Lett. 116, 075001 (2016).10.1103/PhysRevLett.116.075001
    [20]
    H. Peng, Z. H. Wu, Y. L. Zuo, Z. M. Zhang, K. N. Zhou, and J. Q. Su, “Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma,” Phys. Plasmas 23, 073516 (2016).10.1063/1.4959173
    [21]
    Y. Ping, W. Cheng, S. Suckewer, D. S. Clark, and N. J. Fisch, “Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma,” Phys. Rev. Lett. 92, 175007 (2004).10.1103/physrevlett.92.175007
    [22]
    W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. J. Fisch, M. S. Hur, and J. S. Wurtele, “Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses,” Phys. Rev. Lett. 94, 045003 (2005).10.1103/PhysRevLett.94.045003
    [23]
    J. Ren, W. Cheng, S. Li, and S. Suckewer, “A new method for generating ultraintense and ultrashort laser pulses,” Nat. Phys. 3, 732–736 (2007).10.1038/nphys717
    [24]
    D. Turnbull, S. Li, A. Morozov, and S. Suckewer, “Possible origins of a time-resolved frequency shift in Raman plasma amplifiers,” Phys. Plasmas 19, 073103 (2012).10.1063/1.4736856
    [25]
    D. Turnbull, S. Li, A. Morozov, and S. Suckewer, “Simultaneous stimulated Raman, Brillouin, and electron-acoustic scattering reveals a potential saturation mechanism in Raman plasma amplifiers,” Phys. Plasmas 19, 083109 (2012).10.1063/1.4748290
    [26]
    G. Vieux, S. Cipiccia, D. W. Grant, N. Lemos, P. Grant, C. Ciocarlan, B. Ersfeld, M. S. Hur, P. Lepipas, G. G. Manahan, G. Raj, D. Reboredo Gil, A. Subiel, G. H. Welsh, S. M. Wiggins, S. R. Yoffe, J. P. Farmer, C. Aniculaesei, E. Brunetti, X. Yang, R. Heathcote, G. Nersisyan, C. L. S. Lewis, A. Pukhov, J. M. Dias, and D. A. Jaroszynski, “An ultra-high gain and efficient amplifier based on Raman amplification in plasma,” Sci. Rep. 7, 2399 (2017).10.1038/s41598-017-01783-4
    [27]
    Z. Wu, Q. Chen, A. Morozov, and S. Suckewer, “Stimulated Raman backscattering amplification with a low-intensity pump,” Phys. Plasmas 26, 103111 (2019).10.1063/1.5094744
    [28]
    L. Lancia, J. R. Marquès, M. Nakatsutsumi, C. Riconda, S. Weber, S. Hüller, A. Mancić, P. Antici, V. T. Tikhonchuk, A. Héron, P. Audebert, and J. Fuchs, “Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime,” Phys. Rev. Lett. 104, 025001 (2010).10.1103/PhysRevLett.104.025001
    [29]
    J.-R. Marqués, L. Lancia, T. Gangolf, M. Blecher, S. Bolanos, J. Fuchs, O. Willi, F. Amiranoff, R. L. Berger, M. Chiaramello, S. Weber, and C. Riconda, “Joule-level high-efficiency energy transfer to subpicosecond laser pulses by a plasma-based amplifier,” Phys. Rev. X 9, 021008 (2019).10.1103/physrevx.9.021008
    [30]
    N. A. Yampolsky and N. J. Fisch, “Limiting effects on laser compression by resonant backward Raman scattering in modern experiments,” Phys. Plasmas 18, 056711 (2011).10.1063/1.3587120
    [31]
    V. M. Malkin and N. J. Fisch, “Backward Raman amplification of ionizing laser pulses,” Phys. Plasmas 8, 4698 (2001).10.1063/1.1400791
    [32]
    K. Qu, I. Barth, and N. J. Fisch, “Plasma wave seed for Raman amplifiers,” Phys. Rev. Lett. 118, 164801 (2017).10.1103/physrevlett.118.164801
    [33]
    A. A. Balakin, D. S. Levin, and S. A. Skobelev, “Compression of laser pulses due to Raman amplification of plasma noises,” Phys. Rev. A 102, 013516 (2020).10.1103/physreva.102.013516
    [34]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, New York, 1988).
    [35]
    [36]
    Z. M. Zhang, X. T. He, Z. M. Sheng, and M. Y. Yu, “Hundreds MeV monoenergetic proton bunch from interaction of 1020–21 W/cm2 circularly polarized laser pulse with tailored complex target,” Appl. Phys. Lett. 100, 134103 (2012).10.1063/1.3696885
    [37]
    Z. M. Zhang, B. Zhang, W. Hong, M. Y. Yu, J. Teng, S. K. He, and Y. Q. Gu, “Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas,” Phys. Plasmas 21, 123109 (2014).10.1063/1.4902370
    [38]
    Z. M. Zhang, B. Zhang, W. Hong, Z. G. Deng, J. Teng, S. K. He, W. M. Zhou, and Y. Q. Gu, “Generation of high-power few-cycle lasers via Brillouin-based plasma amplification,” Phys. Plasmas 24, 113104 (2017).10.1063/1.4999651
    [39]
    D. S. Clark and N. J. Fisch, “Regime for a self-ionizing Raman laser amplifier,” Phys. Plasmas 9, 2772 (2002).10.1063/1.1471515
    [40]
    D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120, 024801 (2018).10.1103/PhysRevLett.120.024801
    [41]
    D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–268 (2018).10.1038/s41566-018-0121-8
    [42]
    A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4, 1298–1304 (2017).10.1364/optica.4.001298
    [43]
    D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Theory of stimulated scattering processes in laser-irradiated plasmas,” Phys. Fluids 18, 1002 (1975).10.1063/1.861248
    [44]
    S. Hüller, P. Mulser, and A. M. Rubenchik, “Nonstationary stimulated Brillouin backscattering,” Phys. Fluids B 3, 3339 (1991).10.1063/1.859994
    [45]
    I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B: Lasers Opt. 36, 83–92 (1985).10.1007/bf00694694
    [46]
    H. Meng and H. J. Eichler, “Nd:YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas,” Opt. Lett. 16, 569–571 (1991).10.1364/ol.16.000569
    [47]
    V. A. Gorbunov, S. B. Papernyĭ, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,”Sov. J. Quantum Electron. 13, 900 (1983).10.1070/qe1983v013n07abeh004367
    [48]
    F. Yang, F. Gyger, and L. Thévenaz, “Intense Brillouin amplification in gas using hollow-core waveguides,” Nat. Photonics 14, 700–708 (2020).10.1038/s41566-020-0676-z
    [49]
    M. Damzen, V. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundamentals and Applications (Institute of Physics Publishing, London, 2003).
    [50]
    B. Wolff, H. Rottke, D. Feldmann, and K. H. Welge, “Multiphoton-ionization of hydrogen atoms in intense laser fields,” Z. Phys. D: At., Mol. Clusters 10, 35–43 (1988).10.1007/bf01425579
    [51]
    C. Zhang, Z. Nie, Y. Wu, M. Sinclair, C.-K. Huang, K. A. Marsh, and C. Joshi, “Ionization induced plasma grating and its applications in strong-field ionization measurements,” Plasma Phys. Controlled Fusion 63, 095011 (2021).10.1088/1361-6587/ac1751
    [52]
    S. V. Bulanov, T. Z. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rosanov, “Relativistic mirrors in plasmas. Novel results and perspectives,” Phys.-Usp. 56, 429 (2013).10.3367/ufne.0183.201305a.0449
    [53]
    G. A. Mourou, N. J. Fisch, V. M. Malkin, Z. Toroker, E. A. Khazanov, A. M. Sergeev, T. Tajima, and B. Le Garrec, “Exawatt-zettawatt pulse generation and applications,” Opt. Commun. 285, 720–724 (2012).10.1016/j.optcom.2011.10.089
    [54]
    H. Peng, C. Riconda, M. Grech, C.-T. Zhou, and S. Weber, “Dynamical aspects of plasma gratings driven by a static ponderomotive potential,” Plasma Phys. Controlled Fusion 62, 115015 (2020).10.1088/1361-6587/abb3aa
    [55]
    H. Peng, C. Riconda, M. Grech, J. Q. Su, and S. Weber, “Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description,” Phys. Rev. E 100, 061201(R) (2019).10.1103/PhysRevE.100.061201
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (67) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return